In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction accuracy criterion and matching curve-fitting in this work demonstrated that if the residuals of the revised model are white noise, the forecasts are unbiased. Future work investigating robust hybrid model forecasting using fuzzy neural networks would be very interesting.
Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show MoreThe open hole well log data (Resistivity, Sonic, and Gamma Ray) of well X in Euphrates subzone within the Mesopotamian basin are applied to detect the total organic carbon (TOC) of Zubair Formation in the south part of Iraq. The mathematical interpretation of the logs parameters helped in detecting the TOC and source rock productivity. As well, the quantitative interpretation of the logs data leads to assigning to the organic content and source rock intervals identification. The reactions of logs in relation to the increasing of TOC can be detected through logs parameters. By this way, the TOC can be predicted with an increase in gamma-ray, sonic, neutron, and resistivity, as well as a decrease in the density log
... Show MoreIn this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .
Acquisition provisions in Islamic jurisprudence
Information processing has an important application which is speech recognition. In this paper, a two hybrid techniques have been presented. The first one is a 3-level hybrid of Stationary Wavelet Transform (S) and Discrete Wavelet Transform (W) and the second one is a 3-level hybrid of Discrete Wavelet Transform (W) and Multi-wavelet Transforms (M). To choose the best 3-level hybrid in each technique, a comparison according to five factors has been implemented and the best results are WWS, WWW, and MWM. Speech recognition is performed on WWS, WWW, and MWM using Euclidean distance (Ecl) and Dynamic Time Warping (DTW). The match performance is (98%) using DTW in MWM, while in the WWS and WWW are (74%) and (78%) respectively, but when using (
... Show MoreRecommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness o
... Show MoreComputer analysis of simple eye model is performed in the present work by using the Zemax optical design software 2000E . The most important optical parameters of the eye were calculated such as the effective focal length (EFL) , the image spot size at the retina and found to be in a reasonable agreement with the values needed for the laser retinal treatment .The present eye model leads to an effective wavelength and we found the image spot diagram at the surface of the retina and the wavefront error which are provided at zero field angle. This gives a good evidence of the validity of the model in one hand, and can be used to determine the compatibility of any optical design intended for visual applications. By using the pulse fre
... Show MoreBackground: Orthodontic mini-implants are increasingly used in orthodontics and the bone density is a very important factor in stabilization and success of mini-implant. The aim of this study was to observe the relationship among maximum bite force (MBF); body mass index (BMI); face width, height and type; and bone density in an attempt to predict bone density from these variables to eliminate the need for CT scan which have a highly hazard on patient. Materials and Methods: Computed tomographic (CT) images were obtained for 70 patients (24 males and 46 females) with age range 18-30 years. The maxillary and mandibular buccal cortical and cancellous bone densities were measured between 2nd premolar and 1st molar at two levels from the alveol
... Show MoreThis work studies the role of serum apelin-36 and Glutathione S-transferases (GST) activity in association with the hormonal, metabolic profiles and their link to the risk of cardiovascular disease (CVD) in healthy and patients' ladies with polycystic ovary syndrome (PCOS). A total of fifty-four (PCOS) patients and thirty-one healthy woman as a control have been studied. The PCOS patients were subdivided on the basis of body-mass-index (BMI), into 2-subgroups (the first group was obese-PCOS with BMI ≥ 30 and the second group was non-obese PCOS MBI<30). Fasting-insulin-levels and Lipid-profile, Homeostatic-model assessment-of-insulin-resistance (HOMA-IR), follicle-stimulating-hormone (FSH), luteinizing-hormone (LH), testosterone and
... Show More