In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction accuracy criterion and matching curve-fitting in this work demonstrated that if the residuals of the revised model are white noise, the forecasts are unbiased. Future work investigating robust hybrid model forecasting using fuzzy neural networks would be very interesting.
Human perception involves many cognitive processes, such as memory, attention, and critical thinking. An important cognitive process is memory, which is usually connected with the storing and retrieval of information. Different colors and labeling have diverse physiological effects on humans. Our investigation aimed to determine if a change in color or labeling would have a significant effect on memory span and serial recall. However, our results do not support that coloring and labeling have significant impacts on a subject’s memory.
The adsorption behavior of Bismarck brown (BB) dye from aqueous solutions onto graphene oxide GO and graphene oxide-g-poly (n-butyl methacrylate-co-methacrylic acid) GO-g-pBCM as adsorbents was investigated. The prepared GO and GO-g-pBCM were characterized by Fourier transform infrared spectroscopy FTIR, which confirmed the compositions of the prepared adsorbents. Adsorption of BB dye onto GO and GO-g-pBCM was explored in a series of batch experiments under various conditions. The data were examined utilizing Langmuir and Freundlich isotherms. The Langmuir isotherm was seen as increasingly reasonable from the experimental information of dye on formulating adsorbents. Kinetic investigations showed that the experimental data were fitted ve
... Show MoreThis research is an attempt to solve the ambiguity associated with the stratigraphic setting of the main reservoir (late Cretaceous) of Mishrif Formation in Dujaila oil field. This was achieved by studying a 3D seismic reflection post-stack data for an area of 602.62 Km2 in Maysan Governorate, southeast of Iraq. Seismic analysis of the true amplitude reflections, time maps, and 3D depositional models showed a sufficient seismic evidence that the Mishrif Formation produces oil from a stratigraphic trap of isolated reef carbonate buildups that were grown on the shelf edge of the carbonate platform, located in the area around the productive well Dujaila-1. The low-frequency attribute illustrated tha
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreGas lift is one of the artificial lift techniques which it is frequently implemented to raise oil production. Conventionally, the oil wells produce depending on the energy of reservoir pressure and solution gas which declines due to continuous production. Therefore, many oil wells after a certain production time become unable to lift oil to the surface. Thus, the continuity of production requires implementation of gas lift which works to decrease the average fluid density in the tubing by injection gas through the annulus into the tubing. This paper aims to get maximum oil production of an Iraqi giant oil field at optimum injected gas rate. The field is located in south of Iraq and in
Drilling deviated wells is a frequently used approach in the oil and gas industry to increase the productivity of wells in reservoirs with a small thickness. Drilling these wells has been a challenge due to the low rate of penetration (ROP) and severe wellbore instability issues. The objective of this research is to reach a better drilling performance by reducing drilling time and increasing wellbore stability.
In this work, the first step was to develop a model that predicts the ROP for deviated wells by applying Artificial Neural Networks (ANNs). In the modeling, azimuth (AZI) and inclination (INC) of the wellbore trajectory, controllable drilling parameters, unconfined compressive strength (UCS), formation
... Show MoreGrey system theory is a multidisciplinary scientific approach, which deals with systems that have partially unknown information (small sample and uncertain information). Grey modeling as an important component of such theory gives successful results with limited amount of data. Grey Models are divided into two types; univariate and multivariate grey models. The univariate grey model with one order derivative equation GM (1,1) is the base stone of the theory, it is considered the time series prediction model but it doesn’t take the relative factors in account. The traditional multivariate grey models GM(1,M) takes those factor in account but it has a complex structure and some defects in " modeling mechanism", "parameter estimation "and "m
... Show MoreActive Magnetic Bearings (AMBs) are progressively being implemented in a wide variety of applications. Their exclusive appealing features make them suitable for solving traditional rotor-bearing problems using novel design approaches for rotating machinery. In this paper, a linearized uncertain model of AMBs is utilized to develop a nonlinear sliding mode controller based on Lyapunov function for the electromechanical system. The controller requires measurements of the rotor displacements and their derivatives. Since the control law is discontinuous, the proposed controller can achieve a finite time regulation but with the drawback of the chattering problem. To reduce the effect of this problem, the gain of the uni
... Show MoreKnowing the distribution of the mechanical rock properties and the far field stresses for the field of interest is an important task for many applications concerning reservoir geomechanics, including wellbore instability analysis, hydraulic fracturing, sand production, reservoir compaction, and subsidence. A major challenge with determining the rock's mechanical properties is that they cannot be directly measured at the borehole. Furthermore, the recovered carbonate core samples for performing measurements are limited and they provide discrete data for specific depths.
The purpose of this study is to build 2D and 3D geomechanical models of the Khasib reservoir in the East Baghdad oil field/ Central area. TECHLOG.2015.3 softwa
... Show More