Preferred Language
Articles
/
BxaWBocBVTCNdQwCRTBH
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized support vector regression model with a genetic algorithm (SVR-GA) over the other ML forecasting models for monthly river flow forecasting using 90%–10% data division. In addition, it was found to improve the accuracy in forecasting high flow events. The unique architecture of developed SVR-GA due to the ability of the GA optimizer to tune the internal parameters of the SVR model provides a robust learning process. This has made it more efficient in forecasting stochastic river flow behaviour compared to the other developed hybrid models.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Oct 30 2023
Journal Name
Traitement Du Signal
A Comprehensive Review on Machine Learning Approaches for Enhancing Human Speech Recognition
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Thu Jun 30 2022
Journal Name
Muthanna Journal For Agricultural Sciences
Developing and testing of automated sprayer for agrochemicals application trials in Iraq
...Show More Authors

The field experiment was conducted with the aim of developing and testing an automatic sprayer for agricultural spray experiments and studying the effect of spray pressure, spray speed and spray height on the spraying process. The effects of the major spraying factors (pressure, speed, and height) on the spraying performance of the automatic sprayer were studied. This study included several traits: First - the drop sizes - Second - the penetration of the spray into the vegetation cover - Third, the spray wasted. The results showed: - First: - Increase in coverage percentage when using the first speed, 2 km / h, which amounted to 26.85%. An increment in the spraying penetration of the vegetation cover was observed at the second speed

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Fri Mar 28 2025
Journal Name
Journal Of Physical Education
The Effect of Soft Toss Machine Training on Some Kinematic Variables and backhand accuracy of Tennis Players U16 years
...Show More Authors

The importance of the research is evident in the use of exercises with the training device, which is one of the modern techniques in teaching the abilities of players, especially in teaching the skill of the backhand, and in improving the accuracy of the performance of players and increasing the contribution to the formation of a base for the game for players who have a good level of learning and upgrading the game to reach a certain achievement, and the research issue was represented in the lack of accuracy in sending balls to the required areas to achieve points, especially in the performance of the skill of the backhand due to the speed of play during the course of the match, and the study aimed to introduce modern technology usi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 15 2016
Journal Name
The Iraqi Journal For Mechanical And Material Engineering
MACHINE VISION APPLICATION IN MANUFACTURING: INSPECTION OF DIMENSIONS
...Show More Authors

Computers have been used for numerous applications involving the automatic or semiautomatic recognition of patterns in image. Advanced manufacturing system requires automated inspection and test method to increase production and yield best quality of product. Methods are available today is machine vision. Machine vision systems are widely used today in the manufacturing industry for inspection and sorting application. The objective of this paper is to apply machine vision technology for measuring geometric dimension of an automotive part. Vision system usually requires reprogramming or parameterization of software when it has to be configured for a part or product. A web camera used to capture an image of an automotive part that has been ch

... Show More
Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
Ieee Access
Implementation of Univariate Paradigm for Streamflow Simulation Using Hybrid Data-Driven Model: Case Study in Tropical Region
...Show More Authors

View Publication
Scopus (87)
Crossref (85)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2025
Journal Name
Fusion: Practice And Applications
Enhanced EEG Signal Classification Using Machine Learning and Optimization Algorithm
...Show More Authors

This paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Application of Data Mining Techniques on Tourist Expenses in Malaysia
...Show More Authors

Tourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Aug 10 2024
Journal Name
Cureus
Machine Learning and Vision: Advancing the Frontiers of Diabetic Cataract Management
...Show More Authors

View Publication
Clarivate Crossref
Publication Date
Wed Nov 22 2017
Journal Name
Farm Machinery And Processes Management In Sustainable Agriculture, Ix International Scientific Symposium
TESTING THE UNIFORMITY OF SPRAY DISTRIBUTION UNDER DIFFERENT APPLICATION PARAMETERS
...Show More Authors

View Publication
Crossref (1)
Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
A noval SVR estimation of figarch modal and forecasting for white oil data in Iraq
...Show More Authors

The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals

... Show More
View Publication Preview PDF
Scopus