The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized support vector regression model with a genetic algorithm (SVR-GA) over the other ML forecasting models for monthly river flow forecasting using 90%–10% data division. In addition, it was found to improve the accuracy in forecasting high flow events. The unique architecture of developed SVR-GA due to the ability of the GA optimizer to tune the internal parameters of the SVR model provides a robust learning process. This has made it more efficient in forecasting stochastic river flow behaviour compared to the other developed hybrid models.
The research aims to study strategic training and its impact on improving the performance of the inspectors general offices in Iraqi ministries, through two variables strategic training Which include Four Dimensions ( Strategic analysis , Formulation of Training Strategy , Implement the Training Strategy , Evaluation ) and Performance included Three dimensions ( Efficiency , Effectiveness , Added-Value).
This research problem is that the Offices of Inspectors rely on pre-made training Programs received from training centers without designing the training programs that provide the employees with the skills and abilities that lead to the implementation of the current and future goals of the orga
... Show MoreThe assessment of a river water’ quality is an essential procedure of monitor programs and isused to collect basic environmental data. The management of integrated water resources in asustainable method is also necessary to allow future generations to meet their water needs. Themain objective of this research is to assess the effect of the Diyala River on Tigris River waterquality using Geographic Information System (GIS) technique. Water samples have beencollected monthly from November 2017 to April 2018 from four selected locations in Tigris andDiyala Rivers using the grab sampling method. Fourteen parameters were studied which areTurbidity, pH, Dissolved Oxygen, Biological Oxygen Demand, Electrical Conductivity, TotalDissolved Solids,
... Show MoreThe assessment of a river water’ quality is an essential procedure of monitor programs and is used to collect basic environmental data. The management of integrated water resources in a sustainable method is also necessary to allow future generations to meet their water needs. The main objective of this research is to assess the effect of the Diyala River on Tigris River water quality using Geographic Information System (GIS) technique. Water samples have been collected monthly from November 2017 to April 2018 from four selected locations in Tigris and Diyala Rivers using the grab sampling method. Fourteen parameters were studied which are Turbidity, pH, Dissolved Oxygen, Biological Oxygen Demand, Electrical Conductivi
... Show MoreThe main objective and primary concern to every investor not only to achieve a greater return on his or her investments, but also to create the largest possible value of these investments the, researchers and those interested in the field of investment and financial analysis try to develop standards for performance valuation is guided through the  
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreE-learning is a lifeline for the educational process, which contributed to the sustainability of working educational organizations and prevented them from stopping, so the study came to measure the compatibility between E-learning quality dimensions (information technology, educational curricula, teaching methods, and intellectual capital of educational institution) as an independent variable, and educational services quality dimensions represented by (safety, tangibility, reliability and Confidence) as a dependent variable. The sample was 150 teachers was drawn from the College of Administration and Economics community of 293 teachers through the use of several statistical methods to measure the degree of correlation and impact between the
... Show MoreMature oil reservoirs surrounded with strong edge and bottom water drive aquifers experience pressure depletion and water coning/cresting. This laboratory research investigated the effects of bottom water drive and gas breakthrough on immiscible CO2-Assisted Gravity Drainage (CO2-AGD), focusing on substantial bottom water drive. The CO2-AGD method vertically separates the injected CO2 to formulate a gas cap and Oil. Visual experimental evaluation of CO2-AGD process performance was performed using a Hele-Shaw model. Water-wet sand was used for the experiments. The gas used for injection was pure CO2, and the “oleic” phase was n-decane with a negative spreading coefficient. The aqueous phase was deionized water. To evaluate the feasibilit
... Show MoreThis paper presents the design, construction and investigates an experimental study of a parabolic Trough Solar Collector (PTSC). It is constructed of multi – piece glass mirror to form the parabolic reflector (1.8 m ? 2.8 m) its form were checked with help of a laser and carbon steel rectangular as receiver. Sun tracker has been developed (using two – axis) to track solar PTSC according to the direction of beam propagation of solar radiation. Using synthetic oil as a heat transfer its capability to heat transfer and load high temperature (?400 oc). The storage tank is fabricated with stainless steel of size 50 L. The experimental tests have been carried out in Baghdad climatic conditions (33.3o N, 44.4o E) during selective days of the
... Show More