Land Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that use of textural data during the object image classification approach can considerably enhance land use classification performance. Moreover, the results showed higher overall accuracy (86.02%) in the o object based method than pixel based (79.06%) in urban extractions. The object based performed much more capabilities than pixel based.
In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water
... Show MoreDEMs, thus, simply regular grids of elevation measurements over the land surface.The aim of the present work is to produce high resolution DEM for certain investigated region (i.e. Baghdad University Campus\ college of science). The easting and northing of 90 locations, including the ground-base and buildings of the studied area, have been obtained by field survey using global positioning system (GPS). The image of the investigated area has been extracted from Quick-Bird satellite sensor (with spatial resolution of 0.6 m). It has been geo-referenced and rectified using 1st order polynomial transformation. many interpolation methods have been used to estimate the elevation such as ordinary Kriging, inverse distance weight
... Show MoreThe skin temperature of the earth’s surface is referred to as the Land Surface Temperature (LST). the availability of long-term and high-quality temperature records is important for various uses that affect people’s lives and livelihoods. Much valid information was provided to this research from remote sensing technology by using Landsat 8 (L8) imagery to estimate LST for Al-Ahdab oil field in Wasit city in Iraq. The aim of this research is to analyze LST variations based on Landsat 8 data for 2022 (January, April, July, and October). ArcMap 10.8 was used to estimate LST results. The results values ranged from (about 10 C in January to about 46 C in July). The results show that LS
This paper is based on the Sentinel-2 satellite data: the thermal, red, and NIR bands. The Babylon city was chosen in this study for different reasons: its location in the middle of Iraq and it represents the largest capitals of the Mesopotamia civilization in the word. The Land Surface Temperature (LST) was determined using a method that incorporates remote sensing, geographic information systems, and statistics. This process has made it possible to monitor the relationship between land usage and the land surface temperature for four seasons in the year 2021. The mapswere processed and analyzed by using ArcGIS software. Five maps of the LST were constructed. Each map represents diffe
Correct grading of apple slices can help ensure quality and improve the marketability of the final product, which can impact the overall development of the apple slice industry post-harvest. The study intends to employ the convolutional neural network (CNN) architectures of ResNet-18 and DenseNet-201 and classical machine learning (ML) classifiers such as Wide Neural Networks (WNN), Naïve Bayes (NB), and two kernels of support vector machines (SVM) to classify apple slices into different hardness classes based on their RGB values. Our research data showed that the DenseNet-201 features classified by the SVM-Cubic kernel had the highest accuracy and lowest standard deviation (SD) among all the methods we tested, at 89.51 % 1.66 %. This
... Show MoreIn this study, the specimens of land snails Polygyra cereolus (Megerle v on Mühlfeld t , 181 8
(Gastropoda, Stylommatophora, are collected between March and April 2021
from gardens and nurseries in Baghdad province, this species was recorded as a new record to
Iraq molluscan fauna. Description of the most important characteristics, measurements of the
shell are presented with digital p photographs, subsequently, this study represents the first record
of the Polygyridae in Iraq.
Porosity is important because it reflects the presence of oil reserves. Hence, the number of underground reserves and a direct influence on the essential petrophysical parameters, such as permeability and saturation, are related to connected pores. Also, the selection of perforation interval and recommended drilling additional infill wells. For the estimation two distinct methods are used to obtain the results: the first method is based on conventional equations that utilize porosity logs. In contrast, the second approach relies on statistical methods based on making matrices dependent on rock and fluid composition and solving the equations (matrices) instantaneously. In which records have entered as equations, and the matrix is sol
... Show More