Land Use / Land Cover (LULC) classification is considered one of the basic tasks that decision makers and map makers rely on to evaluate the infrastructure, using different types of satellite data, despite the large spectral difference or overlap in the spectra in the same land cover in addition to the problem of aberration and the degree of inclination of the images that may be negatively affect rating performance. The main objective of this study is to develop a working method for classifying the land cover using high-resolution satellite images using object based method. Maximum likelihood pixel based supervised as well as object approaches were examined on QuickBird satellite image in Karbala, Iraq. This study illustrated that use of textural data during the object image classification approach can considerably enhance land use classification performance. Moreover, the results showed higher overall accuracy (86.02%) in the o object based method than pixel based (79.06%) in urban extractions. The object based performed much more capabilities than pixel based.
Highway network could be considered as a function of the developmental level of the region, that it is representing the sensitive nerve of the economic activity and the corner stone for the implementation of development plans and developing the spatial structure. The main theme of this thesis is to show the characteristics of the regional highway network of Anbar and to determine the most important effective spatial characteristics and the dimension of that effect negatively or positively. Further this thesis tries to draw an imagination for the connection between highway network as a spatial phenomenon and the surrounded natural and human variables within the spatial structure of the region. This thesis aiming also to determine the natu
... Show MoreIn the current study, wild land plant specimens were collected during the flowering and fruiting period of these plants in February, April, June, August, and October 2023 from the riparian area of the Dujail River, Salahaldin Province, north of Baghdad, Iraq. Identified and the results showed that the number of these species were: 104 species, belong to 29 plant families, Included 26 dicotyledon families with 76 genera and 96 species. The asteraceae family was the most diverse, with 30 species, followed by Brassicaceae with (12) species. Additionally, there were 13 families represented by only one species in Dujail River which included: Apocynaceae, Berberidaceae, Capparaceae, Caryophyllaceae, Convolvulaceae, Geraniaceae, Lythraceae
... Show MoreThe aim of this research is to show the importance of the effective use
of the internet in academic libraries; to improve the services and to increase
the competence of librarians.
The research has given some recommendations to improve the quality
of services and the need for cooperative network among academic libraries.
Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has
... Show MoreElectrical resistivity tomography (ERT) methods have been increasingly used in various shallow depth archaeological prospections in the last few decades. These non‐invasive techniques can save time, costs, and efforts in archaeological prospection and yield detailed images of subsurface anomalies. We present the results of quasi‐three‐dimensional (3D) ERT measurements in an area of a presumed Roman construction, using a dense electrode network of parallel and orthogonal profiles in dipole–dipole configuration. A roll‐along technique has been utilized to cover a large part of the archaeological site with a 25 cm electrode and profile spacing, respectively. We have designed a new field proce
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show More