A mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the
... Show MoreA mixture model is used to model data that come from more than one component. In recent years, it became an effective tool in drawing inferences about the complex data that we might come across in real life. Moreover, it can represent a tremendous confirmatory tool in classification observations based on similarities amongst them. In this paper, several mixture regression-based methods were conducted under the assumption that the data come from a finite number of components. A comparison of these methods has been made according to their results in estimating component parameters. Also, observation membership has been inferred and assessed for these methods. The results showed that the flexible mixture model outperformed the others
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreThe logistic regression model regarded as the important regression Models ,where of the most interesting subjects in recent studies due to taking character more advanced in the process of statistical analysis .
The ordinary estimating methods is failed in dealing with data that consist of the presence of outlier values and hence on the absence of such that have undesirable effect on the result. &nbs
... Show MoreBackground: The discriminative power of the classical WHO parameters in relation to male fertility is quite low, because they only address few aspects of sperm quality and function. This has led investigators to focus their attention on the male gamete and in particular its genome.Objective: To explore which of the sperm DNA damage parameters measured by comet assay are more reliable, and their relations with the standard semen parameters.Methods: Study was done on 40 infertile men selected from couples attending the Institute of Embryo Reasearch and Infertility Treatment at Al-Kadhimiya City/ Baghdad in the period between February 2009 and May 2009, with a history of infertility of ≥1 years; and 15 healthy volunteers of proven fertili
... Show MorePDBN Rashid, Multidisciplinary International Journal, 2023
Average interstellar extinction curves for Galaxy and Large Magellanic Cloud (LMC) over the range of wavelengths (1100 A0 – 3200 A0) were obtained from observations via IUE satellite. The two extinctions of our galaxy and LMC are normalized to Av=0 and E (B-V)=1, to meat standard criteria. It is found that the differences between the two extinction curves appeared obviously at the middle and far ultraviolet regions due to the presence of different populations of small grains, which have very little contribution at longer wavelengths. Using new IUE-Reduction techniques lead to more accurate result.