WA Shukur, journal of the college of basic education, 2011 The aim of this research is designing and implementing proposed steganographic method. The proposed steganographic method don’t use a specific type of digital media as a cover but it can use all types of digital media such as audio, all types of images, video and all types of files as a cover with the same of security, accuracy and quality of original data, considering that the size of embedded data must be smaller than the size of a cover. The proposed steganographic method hides embedded data at digital media without any changing and affecting the quality of the cover data. This means, the difference rate between cover before hiding operation and stego is zero. The proposed steganographic method hides embedded data at various locations in cover irregularly or randomly, whereas the locations of cover for information hiding are not constant, this property will increase the level of security for proposed method. In the proposed method, the sender needs sending a file that has small size via any communication channel and that considered as a key while sending a cover is not necessary to recipient if both agree about downloading it from the internet before sending a file. The contents of this file are invaluable for an attacker. The programming language that used in programming this proposed method is C++ language. Steganographically, The proposed steganographic method is strong and robust. It is possible classifying this proposed method as a public key steganography system and substitution system at the same time.
In this study, the spreading of the pandemic coronavirus disease (COVID-19) is formulated mathematically. The objective of this study is to stop or slow the spread of COVID-19. In fact, to stop the spread of COVID-19, the vaccine of the disease is needed. However, in the absence of the vaccine, people must have to obey curfew and social distancing and follow the media alert coverage rule. In order to maintain these alternative factors, we must obey the modeling rule. Therefore, the impact of curfew, media alert coverage, and social distance between the individuals on the outbreak of disease is considered. Five ordinary differential equations of the first-order are used to represent the model. The solution properties of the system ar
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.
In this paper the modified trapezoidal rule is presented for solving Volterra linear Integral Equations (V.I.E) of the second kind and we noticed that this procedure is effective in solving the equations. Two examples are given with their comparison tables to answer the validity of the procedure.
The Assignment model is a mathematical model that aims to express a real problem facing factories and companies which is characterized by the guarantee of its activity in order to make the appropriate decision to get the best allocation of machines or jobs or workers on machines in order to increase efficiency or profits to the highest possible level or reduce costs or time To the extent possible, and in this research has been using the method of labeling to solve the problem of the fuzzy assignment of real data has been approved by the tire factory Diwaniya, where the data included two factors are the factors of efficiency and cost, and was solved manually by a number of iterations until reaching the optimization solution,
... Show MoreCantilever beams are used in many crucial applications in machinery and construction. For example, the airplane wing, the microscopic probe for atomic force measurement, the tower crane overhang and twin overhang folding bridge are typical examples of cantilever beams. The current research aims to develop an analytical solution for the free vibration problem of cantilever beams. The dynamic response of AISI 304 beam represented by the natural frequencies was determined under different working surrounding temperatures ((-100 ℃ to 400 ℃)). A Matlab code was developed to achieve the analytical solution results, considering the effect of some beam geometrical dimensions. The developed analytical solution has been verified successful
... Show MoreDecision making is vital and important activity in field operations research ,engineering ,administration science and economic science with any industrial or service company or organization because the core of management process as well as improve him performance . The research includes decision making process when the objective function is fraction function and solve models fraction programming by using some fraction programming methods and using goal programming method aid programming ( win QSB )and the results explain the effect use the goal programming method in decision making process when the objective function is
fraction .
The Aim of this paper is to investigate numerically the simulation of ice melting in one and two dimension using the cell-centered finite volume method. The mathematical model is based on the heat conduction equation associated with a fixed grid, latent heat source approach. The fully implicit time scheme is selected to represent the time discretization. The ice conductivity is chosen
to be the value of the approximated conductivity at the interface between adjacent ice and water control volumes. The predicted temperature distribution, percentage melt fraction, interface location and its velocity is compared with those obtained from the exact analytical solution. A good agreement is obtained when comparing the numerical results of one
in this paper the collocation method will be solve ordinary differential equations of retarted arguments also some examples are presented in order to illustrate this approach