Preferred Language
Articles
/
BhiXD5UBVTCNdQwCGSXz
Comparison of Some Estimator Methods of Regression Mixed Model for the Multilinearity Problem and High – Dimensional Data
...Show More Authors

In order to obtain a mixed model with high significance and accurate alertness, it is necessary to search for the method that performs the task of selecting the most important variables to be included in the model, especially when the data under study suffers from the problem of multicollinearity as well as the problem of high dimensions. The research aims to compare some methods of choosing the explanatory variables and the estimation of the parameters of the regression model, which are Bayesian Ridge Regression (unbiased) and the adaptive Lasso regression model, using simulation. MSE was used to compare the methods.

Crossref
View Publication
Publication Date
Sun Dec 06 2009
Journal Name
Baghdad Science Journal
Carbonization and Treatment the High Temperature Distortion of Thoriated Tungsten Cathode for High Power Electronic Tubes
...Show More Authors

A metal mandrel was designed for manufacturing the cathodes of high power electron tube ( Tetrode ) used in broadcasting transmitting tubes type TH558 and CQS200.The cathodes were manufactured in the present work from thoriated tungsten wires ( 2? ThO2- W) with different diameters .These cathodes were carbonized in sequences of processes to determine the carbonization parameters (temperature, pressure, time, current and voltage).Then the carbonized cathodes dimension were accurately measured to determine the deviation due to the high temperature distortion effect at about 1800°C .the distorted cathodes due to the carbonization process was treated when it was subjected inside the vacuum chamber and heat treated again .The carbonized cat

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Joiv : International Journal On Informatics Visualization
Evaluation of the Performance of Kernel Non-parametric Regression and Ordinary Least Squares Regression
...Show More Authors

Researchers need to understand the differences between parametric and nonparametric regression models and how they work with available information about the relationship between response and explanatory variables and the distribution of random errors. This paper proposes a new nonparametric regression function for the kernel and employs it with the Nadaraya-Watson kernel estimator method and the Gaussian kernel function. The proposed kernel function (AMS) is then compared to the Gaussian kernel and the traditional parametric method, the ordinary least squares method (OLS). The objective of this study is to examine the effectiveness of nonparametric regression and identify the best-performing model when employing the Nadaraya-Watson

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Fri Aug 05 2016
Journal Name
Wireless Communications And Mobile Computing
A comparison study on node clustering techniques used in target tracking WSNs for efficient data aggregation
...Show More Authors

Wireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati

... Show More
View Publication
Scopus (31)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2011
Journal Name
Journal Of Economics And Administrative Sciences
Selection of the initial value of the time series generating the first-order self-regression model in simulation modeAnd their impact on the accuracy of the model
...Show More Authors

In this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method  and the least squares method and that using the method of simulation model  first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.

                  

View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
DYNAMIC MODELING FOR DISCRETE SURVIVAL DATA BY USING ARTIFICIAL NEURAL NETWORKS AND ITERATIVELY WEIGHTED KALMAN FILTER SMOOTHING WITH COMPARISON
...Show More Authors

Survival analysis is widely applied in data describing for the life time of item until the occurrence of an event of interest such as death or another event of understudy . The purpose of this paper is to use the dynamic approach in the deep learning neural network method, where in this method a dynamic neural network that suits the nature of discrete survival data and time varying effect. This neural network is based on the Levenberg-Marquardt (L-M) algorithm in training, and the method is called Proposed Dynamic Artificial Neural Network (PDANN). Then a comparison was made with another method that depends entirely on the Bayes methodology is called Maximum A Posterior (MAP) method. This method was carried out using numerical algorithms re

... Show More
Preview PDF
Scopus (1)
Scopus
Publication Date
Thu Feb 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
Estimation of parameters of two-dimensional sinusoidal signal model by employing Deferential Evaluation algorithm and the use of Sequential approach in estimation
...Show More Authors

Estimation the unknown parameters of a two-dimensional sinusoidal signal model is an important and a difficult problem , The importance of this model  in modeling Symmetric gray- scale texture image . In this paper, we propose employment Deferential Evaluation algorithm and the use of Sequential approach to estimate the unknown frequencies and amplitudes of the 2-D sinusoidal components when the signal is affected by noise. Numerical simulation are performed for different sample size, and various level of standard deviation to observe the performance of this method in estimate the parameters of 2-D sinusoidal signal model , This model was used for modeling  the Symmetric gray scale texture image and estimating by using

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Mar 01 2015
Journal Name
Journal Of Engineering
Multi-Sites Multi-Variables Forecasting Model for Hydrological Data using Genetic Algorithm Modeling
...Show More Authors

A two time step stochastic multi-variables multi-sites hydrological data forecasting model was developed and verified using a case study. The philosophy of this model is to use the cross-variables correlations, cross-sites correlations and the two steps time lag correlations simultaneously, for estimating the parameters of the model which then are modified using the mutation process of the genetic algorithm optimization model. The objective function that to be minimized is the Akiake test value. The case study is of four variables and three sites. The variables are the monthly air temperature, humidity, precipitation, and evaporation; the sites are Sulaimania, Chwarta, and Penjwin, which are located north Iraq. The model performance was

... Show More
View Publication Preview PDF
Publication Date
Thu Jul 01 2021
Journal Name
Journal Of Physics: Conference Series
Estimation of the reliability function of the Rayleigh distribution using some robust and kernel methods
...Show More Authors
Abstract<p>The research presents the reliability. It is defined as the probability of accomplishing any part of the system within a specified time and under the same circumstances. On the theoretical side, the reliability, the reliability function, and the cumulative function of failure are studied within the one-parameter Raleigh distribution. This research aims to discover many factors that are missed the reliability evaluation which causes constant interruptions of the machines in addition to the problems of data. The problem of the research is that there are many methods for estimating the reliability function but no one has suitable qualifications for most of these methods in the data such </p> ... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Oct 20 2018
Journal Name
Journal Of Economics And Administrative Sciences
Bayesian Tobit Quantile Regression Model Using Four Level Prior Distributions
...Show More Authors

Abstract:

      In this research we discussed the parameter estimation and variable selection in Tobit quantile regression model in present of multicollinearity problem. We used elastic net technique as an important technique for dealing with both multicollinearity and variable selection. Depending on the data we proposed Bayesian Tobit hierarchical model with four level prior distributions . We assumed both tuning parameter are random variable and estimated them with the other unknown parameter in the model .Simulation study was used for explain the efficiency of the proposed method and then we compared our approach with (Alhamzwi 2014 & standard QR) .The result illustrated that our approach

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
International Journal Of Mathematics Trends And Technology (ijmtt)
Some Statistical Properties of the Solutions of a System of two dimensional Integral Equations contains Beta distribution
...Show More Authors