This paper presents a new approach to discover the effect of depth water for underwater visible light communications (UVLC). The quality of the optical link was investigated with varying water depth under coastal water types. The performance of the UVLC with multiple input–multiple output (MIMO) techniques was examined in terms of bit error rate (BER) and data rate. The theoretical result explains that there is a good performance for UVLC system under coastal water.
The experiment was conducted using Potato( Solanum tuberosum L.) at the eastern Radwaniyah at private field during fall season 2020/2021 and spring 2021 to study the effect of nitrogen levels to 350, 275, 200 kg N h-1 ( N1, N2, N3) and phosphorous to 100, 180, 360 kg P2O5 h-1 ( P1, P2, P3) and potassium to 100, 200, 300 kg K2O h-1 ( K1, K2, K3) to vegetative growth and yield of industrial potato, The seeds of the hybrid potato Sinora, Class A, were planted in the fall season on 15/9/2020 and Elite in the spring season on 31/1/2021. The experimental fertilizers were added in four batches and in proportions according to the stages of plant age, Factorial experiment with RCBD using three replications. The results showed that changing t
... Show MoreIn this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
The dielectric properties of polyvinyl chloride (PVC)-MnCl2 composite were studied by using the impedance technique. The measurements were carried out as a function of frequency in the range from 10 Hz to 13 MHz and temperature range from 27oC to 55oC. Using a composite of 20 wt. % MnCl2 by weight, it was found that the dielectric constants and the dielectric loss of the prepared films increase with the increasing temperature at law frequency and the enhancement of the ionic conduction which is confirmed by the increase the of AC. conductivity and the decrease of the activation energy of the conduction mechanism at high applied frequency. The observed relaxation and polarization effects of composite a
... Show MoreCeramic to metal joining technique, which was used in this investigation includes the use of active filler alloy as a sandwich between the alumina and kovar alloy for brazing. High purity powdered metals of silver, copper, and additives of titanium were used to prepare the active filler alloy, through compacting the mixed powders and alloying in a furnace with argon atmosphere at the temperature of 800oC for 10 minutes. To use it as an active filler metal, it has been modified to a proper thickness. Two groups of alumina were prepared with different sintering temperatures (1450oC and 1650oC) and each group was tested under atmospheric pressure, vacuum furnace pressure of 2*10-4 torr and vacuum furnace pressure of 2*10-6 torr. All the pro
... Show MoreIn this work, the effect of partial amounts of gases in gas mixture of a CW CO2 laser on the output power was investigated. Also their effect on the condition determining the glow-discharge self-sustaining required for pumping the active medium was studied. Two fit relations were derived to predict the output laser power and the electric field to unit pressure ratio as functions to the partial amounts of gases. Results presented in this work could be used fruitfully to determine some of the optimum operational conditions of glow-discharge low-power CW CO2 lasers.
Background: Vibration decreases the viscosity of composite, making it flow and readily fit the walls of the cavity. This study is initiated to see how this improved adaptation of the composite resin to the cavity walls will affect microleakage using different curing modes
Materials and methods: Standard Class V cavities were prepared on the buccal surface of sixty extracted premolars. Teeth were randomly assigned into two groups (n=30) according to the composite condensation (vibration and conventional) technique, then subdivided into three subgroups (n=10) according to light curing modes (LED-Ramp, LED-Fast and Halogen Continuous modes). Cavities were etched and bonded with Single Bond Universal
... Show MoreBackground: Adjustment of any premature occlusal contact of any zirconia restoration requires its polishing or glazing in order to restore the smoothness of the restoration. The objective of this in vitro study was to evaluate the effects of different polishing systems and glazing on the surface roughness of full-contour zirconia. Material and methods: Forty disks (diameter: 8 mm, thickness: 6.4 mm) were prepared from pre-sintered full-contoured zirconia block; they were colored and sintered in a high-temperature furnace at 1500ËšC for 8 hours. The specimens were then leveled and finished using grinding and polishing machine and adjusted using diamond disk. The specimens were then randomly divided into four groups (n=10), group I involves
... Show MoreThe purpose of this study is designate quenching and tempering heat treatment by using Taguchi technique to determine optimal factors of heat treatment (austenitizing temperature, percentage of nanoparticles, type of base media, nanoparticles type and soaking time) for increasing hardness, wear rate and impact energy properties of 420 martensitic stainless steel. An (L18) orthogonal array was chosen for the design of experiment. The optimum process parameters were determined by using signal-to-noise ratio (larger is better) criterion for hardness and impact energy while (Smaller is better) criterion was for the wear rate. The importance levels of process parameters that effect on hardness, wear rate and impact energy propertie
... Show MoreIn this research the electrical conductivity measurements were made on the amorphous InAs films prepared by thermal evaporation method in thickness 450 nm and annealed in different temperatures in the range (303- 573) K. The electrical conductivity (σ) showed a decreasing trend with the increasing annealing temperature, while the activation energies (Ea1, Ea2) showed an opposite trend, where the activation energies are increased with the annealing temperature.
The aim of this study was to evaluate tensile properties of low and medium carbon ferrite -martensite dual phase steel, and the effect cryogenic treatment at liquid nitrogen temperature (-196 ºC) on its properties. Low carbon steel (C12D) and medium carbon steels (C32D & C42D) were used in this work. For each steel grade, five groups of specimens were prepared according to the type of heat treatment. The first group was normalized, the second group was normalized and subsequently subjected to cryogenic treatment then tempered at (200 ºC) for one hour, the third group was quenched from intercritical annealing temperature of (760 ºC) to obtain dual phase (DP) steel, the fourth and fifth groups were both quenched from (760 ºC), but
... Show More