Purpose: We report a series of 29 pediatric patients who sustained head injuries due to metallic ceiling fans. They all were admitted to the Emergency Department of Neurosurgery Teaching Hospital in Baghdad, Iraq, during January 2015 to January 2017. Results: Pediatric ceiling fan head injuries are characterized by four traits which distinguish them from other types of head injuries; 1- Most of them were because of climbing on or jumping from furniture between the ages of two and five. 2- Most of them sustained compound depressed skull fracture which associated with intracranial lesions and pneumocephalus. 3- The most common indication for surgical intervention was because of dirty wound which mixed with hairs. 4- These variables were statistically significantly correlated with the outcome: Level of consciousness, neurologic deficit, fracture site (occipital fracture had worse outcome), intracranial hemorrhage and surgery. Conclusion: Pediatric metallic ceiling fan head injury should be seen as a distinct type of head injury because it has special presentations, managements, and outcomes. In addition, we should start applying preventive methods to minimize its occurrence.
In recent decades, drug modification is no longer unusual in the pharmaceutical world as living things are evolving in response to environmental changes. A non-steroidal anti-inflammatory drug (NSAID) such as aspirin is a common over-the-counter drug that can be purchased without medical prescription. Aspirin can inhibit the synthesis of prostaglandin by blocking the cyclooxygenase (COX) which contributes to its properties such as anti-inflammatory, antipyretic, antiplatelet and etc. It is also being considered as a chemopreventive agent due to its antithrombotic actions through the COX’s inhibition. However, the prolonged use of aspirin can cause heartburn, ulceration, and gastro-toxicity in children and adults. This review article hi
... Show MoreCarbon-fiber-reinforced polymer (CFRP) is widely acknowledged as a leading advanced material structure, offering superior properties compared to traditional materials, and has found diverse applications in several industrial sectors, such as that of automobiles, aircrafts, and power plants. However, the production of CFRP composites is prone to fabrication problems, leading to structural defects arising from cycling and aging processes. Identifying these defects at an early stage is crucial to prevent service issues that could result in catastrophic failures. Hence, routine inspection and maintenance are crucial to prevent system collapse. To achieve this objective, conventional nondestructive testing (NDT) methods are utilized to i
... Show MorePorous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
Ultra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o
Due to the urgent need to develop technologies for continuous glucose monitoring in diabetes individuals, poten tial research has been applied by invoking the microwave tech niques. Therefore, this work presents a novel technique based on a single port microwave circuit, antenna structure, based on Metamaterial (MTM) transmission line defected patch for sensing the blood glucose level in noninvasive process. For that, the proposed antenna is invoked to measure the blood glu cose through the field leakages penetrated to the human blood through the skin. The proposed sensor is constructed from a closed loop connected to an interdigital capacitor to magnify the electric field fringing at the patch center. The proposed an tenna sensor i
... Show MoreResearch covers the uses the method of Quality Rating Evaluation to evaluate the
quality of production through which a determination of product quality of its production in
order to determine the amount of sales hence the profits for the company. The most important
function is to satisfy consumer at reasonable prices. Methods were applied to the product
(toothpaste) in the General Company for Vegetable Oil – Almaamoon Factory .
The company's has obtained ISO-certified (ISO 9001-2008). Random samples of
final product intended for sale were collected from the store during months (February, April ,
June , October and December) for the year 2011 to determine the "quality rating " through
the applicat
Dam operation and management have become more complex recently because of the need for considering hydraulic structure sustainability and environmental protect on. An Earthfill dam that includes a powerhouse system is considered as a significant multipurpose hydraulic structure. Understanding the effects of running hydropower plant turbines on the dam body is one of the major safety concerns for earthfill dams. In this research, dynamic analysis of earthfill dam, integrated with a hydropower plant system containing six vertical Kaplan turbines (i.e., Haditha dam), is investigated. In the first stage of the study, ANSYS-CFX was used to represent one vertical Kaplan turbine unit by designing a three-dimensional (3-D) finite element (F
... Show MoreNonalcoholic fatty liver disease (NAFLD) is a common liver disease that ranges from simple steatosis to nonalcoholic steatohepatitis (NASH). So far, the underlying mechanism remains poorly understood. Here, we show that hepatic carboxylesterase 2 (CES2) is markedly reduced in NASH patients, diabetic