A 3D Geological model was generated using an advanced geostatistical method for the Cretaceous reservoir in the Bai Hassan oil field. In this study, a 3D geological model was built based on data from four wells for the petrophysical property distribution of permeability, porosity, water saturation, and NTG by using Petrel 2021 software. The geological model was divided into a structural model and a property model. The geological structures of the cretaceous reservoir in the Bai Hassan oil field represent elongated anticline folds with two faults, which had been clarified in the 3D Structural model. Thirteen formations represent the Cretaceous reservoir which includes (Shiranish, Mashurah, U.kometan, Kometan Shale, L. Kometan, Gulneni, Dokan, Mauddud, Jawan/Mud, Batiwah, Shuaiba, Garagu, L.Sarmord). According to the property model, the model for each petrophysical property was constructed based on core data and CPI. By using the geostatistical method, the property model was constructed. The Mauddud Formation is considered one of the most promising hydrocarbon reservoirs in the Bai Hassan oil field based on the results of the property model, where the ratio of water saturation is around 30%, the porosity value is reaching up to 31%, and the net to gross ratio is averaging at 70%.
Soil acts as a last sink for elements that people release into the environment through a range of activities due to its physiochemical characteristics. These substances, whether are organic or mineral pollutants, accumulate in the soil and constitute a significant risk to the ecosystem in general because they mess with the chemical and physical equilibrium of the soil, get into the food chain, and eventually get to people. When pollutant concentrations during the bioaccumulated process exceed the global standards for what is regarded as a contaminant in water, air, and soil. Nine soil samples were collected from different sites and two samples from each site at two depths (0-20 and 20-40 cm) to determine if there were any
... Show MoreThis research includes structure interpretation of the Yamama Formation (Lower Cretaceous) and the Naokelekan Formation (Jurassic) using 2D seismic reflection data of the Tuba oil field region, Basrah, southern Iraq. The two reflectors (Yamama and Naokelekan) were defined and picked as peak and tough depending on the 2D seismic reflection interpretation process, based on the synthetic seismogram and well log data. In order to obtain structural settings, these horizons were followed over all the regions. Two-way travel-time maps, depth maps, and velocity maps have been produced for top Yamama and top Naokelekan formations. The study concluded that certain longitudinal enclosures reflect anticlines in the east and west of the study ar
... Show MoreThis paper contains studying of the Evaluation for the Petrophysical Properties of
Yamama Formation in Ratawi Field which occurs in about 70 km to the west of
Basrah city in Mesopotamia zone (Zubair subzone). The study includes a
petrophysical evaluation and (3 Dimensions) geological model for each unit
especially the three hydrocarbon units comprising the Yamama Formation in (5)
boreholes which are Rt-3, Rt-4, Rt-5, Rt-6 and Rt-7 distributed on the crest and
flanks of the Ratawi structure that are carried out in the present study. The
formation's boundaries were determined using well logs, available core intervals and
by Petrophysical data and it is found that it can be subdivided into three main
reservoir uni
Exploration activities of the oil and gas industry generate loads of formation water called produced water (PW) up to thousands of tons each day. Depending on the geographic area, formation depth, oil production techniques, and age of oil supply wells, PW from different oil fields contain different chemical compositions. Currently, PW is also known as industrial waste water containing heavy metals that are toxic to humans and the environment, requiring special processing so that they can be disposed of in the environment. To determine the heavy metals content in PW from the Al-Ahdab oil field (AOF), the Ministry of Science and Technology/Agricultural Research Department determined som
This study deals with establishing the depositional environment of the Fatha Formation through facies analysis. It also deals with dividing the formation into units based on the rhythmic nature. Data from selected shallow wells near Hit area and deep wells at East Baghdad Oil field are used. Five major lithofacies are recognized in this study, namely, greenish grey marl, limestone, gypsum (and/or anhydrite), halite and reddish brown mudstone (with occasional sandstone).The limestone lithofacies is divided into three microfacies: Gastropods bioclastic wackestone microfacies, Gastropods peloidal bioclastic packstone, and Foraminiferal packstone microfacies.The lithofacies of the Fatha are nested in a rhythmic pattern or what is known as sh
... Show MoreThe major objective of this paper is to recognize the flow units of Yamama Formation in the west Qurna oil field, south of Iraq. To attain this objective, four wells namely, WQ-23, WQ-148, WQ-60, and WQ-203 are selected and analyzed. The two techniques hat proposed by some scientists to identify flow units are tested and verified. Results are also enhanced using well logs interpretation and the flow areas are proposed through the studying of the behavior of different well logs. Results of applying the two proposed techniques identify six flow reservoir units for the wells WQ-23, WQ-148, WQ-60, and WQ-203, respectively. This study also shows that the flow reservoir properties in the Yamama Formation improved towards the northeast of the W
... Show MoreThe study intends to well logs interpretation to determine the petrophysical parameters of Euphrates Formations in Ajeel Oil Field. The petrophysical properties have been determined from well logging, Euphrates Formation in terms of reservoirs units, consist of two Petrophysical properties. Total porosity, effect porosity and secondary porosity have been calculated from neutron, density, and sonic logs. secondary porosity is high and it's resulted from diagenesis processes in the formation. From RHOB-NPHI and N/M cross plot, Euphrates Formation composed mainly from Limestone and dolomite with nodules of anhydrite. Dhiban Formation composed mainly of anhydrite, so it's represented the cap rocks for Euphrates Reservoir were recognized base
... Show MoreThe Hartha Formation is one of the important formations deposited during Late Campanian age.
The present study deals with four boreholes (EB-53, 54, 55 and 56) within the East Baghdad oil field to diagnoses the microfacies and interpret the depositional environments.
Six major microfacies were recognized in the succession of the Hartha Formation. Their characteristic grain types and depositional texture enabled the recognition of paleoenvironment. There are Orbitoides wackestone-packstone , Orbitoides - miliolid wackestone, Peloidal and Pellets - echinoderm wackestone to packstone, Peloidal wackestone to packstone, Pelletal wackestone to packstone, and Planktonic foraminifera wackestone-packstone.
Four assoc
... Show MoreYamama Formation is an important sequence in southern Iraq. Petrographic analysis was used to determine and analyze the microfacies and pore types. The diagenetic processes and the impacts on the petrophysical properties of the rocks were also identified. The petrographic identification was based on data of 250 thin sections of cutting and core samples from four wells that were supplied by the Iraqi Oil Exploration Company (O.E.C). The present study focuses on the depositional environment and the microfacies analysis of Yamama Formation. The results revealed several types of microfacies, including peloidal wackestone-packstone, algal wackestone-packstone, bioclastic wackestone-packstone, fo
... Show MoreBackground: Rhabdomyolysis is a clinical and biochemical syndrome that occurs when skeletal muscle cells disrupt and release creatine phosphokinase and myoglobin into the interstitial space and plasma. The causes of rhabdomyolysis are legion, but the most important and the classical form is the crush syndrome. Acute kidney injury occurs in 33-50% of patients with rhabdomyolysis. Here we report nine cases with acute kidney injury due to crush injury with rhabdomyolysis after the Al-Aema bridge catastrophe in Baghdad, in September 2005.
Methods: Nine patients presented to the nephrology department of the Baghdad Teaching Hospital with a suggestive history of crush and laboratory evidence of rhabdomyolysis and acute kidney injury within