Nanoparticles of humic acid and iron oxide were impregnated on the inert sand to produce sorbent for treating groundwater contained of cadmium and copper ions by technology of permeable reactive barrier (PRB). Sewage sludge was the source of the humic acid to prepare the coated sand by humic acid—iron oxide (CSHAIO) sorbent; so, this work is consistent with sustainable development. For 10 mg/L metal concentration, batch tests at speed of 200 rpm signified that the removal efficiencies are greater than 90% at sorbent dosage 0.25 g/ 50 mL, pH 6 and contact time 1 h. The kinetic data was well described by the Pseudo first-order model indicating that physicosorption is the predominant mechanism. The maximum adsorption capacities (qmax) were calculated by Langmuir model and their values of 25.273 and 114.142 mg/g for cadmium and copper ions respectively. Computer solution (COMSOL) Multiphysics program has utilized to simulate the metal ions transport in the column tests. Model predictions as well as experimental measurements signified that increasing bed depth with decreasing of flow rate and inlet concentration leads to delay in the propagation of metal front.
Metal nanoparticles can serve as an efficient nano-heat source with confinement photothermal effects. Thermo-plasmonic technology allows researchers to control the temperature at a nanoscale due to the possibility of precise light propagation. The response of opto-thermal generation of single gold-silica core-shell nanoparticle immersed in water and Poly-vinylpyrrolidone surrounding media is theoretically investigated. Two lasers (CW and fs pulses) at the plasmonic resonance (532 nm) are utilized. For this purpose, finite element method is used via COMSOL multiphysics to find a numerical computation of absorption cross section for the proposed core –shell NP in different media. Thermo-plasmonic response for both lasers is studied. The
... Show MoreIn this study, the antimicrobial properties of newly synthesized Schiff bases (4a-4e) and thiazolidinone compounds (5a-5e) generated from 3,5-dinitrobenzoic acid were assessed. These compounds were obtained by reacting 3,5-dinitrobenzoic acid (1) with ethanol in a few drops of concentrated H2SO4 to produce the ester (2). The acid hydrazide (3), which was produced by treating the ester with hydrazine hydrate, reacted with the proper aldehydes, including 4-bromobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde, 4-methoxybenzaldehyde, and 4-hydroxy-3-methoxybenzaldehyde, respectively, to form Schiff bases (4a-4e). The thiazolidinone compounds (5a-5e) were produced by the cyclocondensation reaction of compounds (4a-4e) with thio
... Show MoreIn this study, the antimicrobial properties of newly synthesized Schiff bases (4a-4e) and thiazolidinone compounds (5a-5e) generated from 3,5-dinitrobenzoic acid were assessed. These compounds were obtained by reacting 3,5-dinitrobenzoic acid (1) with ethanol in a few drops of concentrated H2SO4 to produce the ester (2). The acid hydrazide (3), which was produced by treating the ester with hydrazine hydrate, reacted with the proper aldehydes, including 4-bromobenzaldehyde, 4-chlorobenzaldehyde, 4-hydroxybenzaldehyde, 4-methoxybenzaldehyde, and 4-hydroxy-3-methoxybenzaldehyde, respectively, to form Schiff bases (4a-4e). The thiazolidinone compounds (5a-5e) were produced by the cyclocondensation reaction of compounds (4a-4e) with thio
... Show MoreIndustrial development has recently increased, including that of plastic industries. Since plastic has a very long analytical life, it will cause environmental pollution, so studies have resorted to reusing recycled waste plastic (sustainable plastic) to produce environmentally friendly concrete (green concrete). In this research, producing environmentally friendly load-bearing concrete masonry units (blocks) was considered where five concrete mixtures were compressed at the blocks producing machine. The cement content reduced from 400 kg/m3 (B-400) to 300 kg/m3 (B-300) then to 200 kg/m3 (B-200). While (B-380) was produced using 380 kg/m3 cement and 20 kg/m3 nano-sil
... Show MoreThis study examined the adsorption behavior of anionic dye (orange G) from aqueous solution onto the raw and activated a mixture of illite, kaolinite and chlorite clays from area of Zorbatiya (east of Iraq).The chemical treatment involved alkali and acid activation. The alkali activation obtained by treated the raw clay (RC) with 5M NaOH (ACSO) and the acid activation founded by treated it with 0.25M HCl (ACH) and 0.25M (ACS). The thermal treatment carried out by calcination the produce activated clay at 750oC for acid activation and 105oC for alkali activation. Batch
... Show MoreLevofloxacin belongs to the fluoroquinolone family; it is a potent broad-spectrum bactericidal agent. The pharmacophore required for significant antibacterial activity is the C-3 carboxylic acid group and the 4-pyridine ring with the C-4 carbonyl group, into which binding to the DNA bases occur. In this work, we tried to show that by masking the carboxyl group through amide formation using certain amines to form levofloxacin carboxamides, an interesting activity is kept. Levofloxacin carboxamides on the C-3 group were prepared, followed by the formation of their copper complexes. The target compounds were characterized by FT-IR, elemental analysis. The antimicrobial activity of the target compounds was evaluated and showed satisfactory resu
... Show MoreIn the present study, semi – batch experiments were conducted to investigate the efficiency of ozone microbubbles (OMBs) in the treatment of aqueous dye solutions methylene orange under different reaction conditions such as effect of initial solution pH , ozone generation rate and initial MO-concentration. The results showed that the removal of MO by OMBs were very high at the acidic and alkaline media and upon increasing the generation rate of ozone from 0.498 to 0.83 mg/s, the removal efficiency dramatically increased from 75to 100% within 15 min. The rate of oxidation reaction followed a pseudo first- order kinetic model. The results demonstrated that OMBs is efficient in terms of the decline of methylene orange c
... Show MoreSome microorganisms can produce nanocellulose, which is known as bacterial nanocellulose (BNC); the most active bacterial producer is acetic acid bacteria (AAB), which is a gram-negative, motile and obligate aerobic belongs to the family Acetobacteraceae. Bacterial nanocellulose has excellent attention in medical (surgical domain), industrial and pharmaceutical fields because of its flexible properties, characteristics and advantages. So, in this study, the AAB (5AC) isolate was isolated from apple vinegar. The production of BNC was performed by using a natural medium called palm dates liquid medium, the produced bacterial Cellulose was purified by using the sodium hydroxide method; it was observed that the wet weight of the BNC was a
... Show MoreMass transfer was examined at a stationary rectangular copper electrode (cathode) by using the reduction of cupric ions as the electrochemical reaction. The influence of electrolyte temperature (25, 45, and 65 oC), and cupric ions concentration (4, 8, and 12 mM) on mass transfer coefficient were investigated by using limiting current technique. The mass transfer coefficient and hence the Sherwood number was correlated as Sh =