Klebsiella pneumoniae is an adaptable pathogen that forms biofilms on a variety of surfaces. This study's objective was to identify the presence of fimbrial genes (types 1 and 3) in K. pneumoniae strains isolated from various clinical sources based on their antibiotic resistance and ability to form biofilms. According to identification utilizing the vitek 2 technology and confirmation by molecular identification targeting the 16S rRNA gene with a particular primer, forty isolates were identified from clinical specimens. The vitek 2 compact system was utilized to evaluate the antibiotic susceptibility of all the isolates. The findings revealed a range of resistance percentages, including 52.5% for Penicillin, 40.5% for Trimethoprim/Sulfamethoxazole, 34.5% for Cephalosporins, 6.25 % for Fluoroquinolones, and 2.5% for each of Carbapenem, Aminoglycoside, Tetracycline, and Nitrofurantoin. The 96-well microtiter plate technique was utilized to generate biofilms. The results demonstrated that all 40 Klebsiella pneumoniae isolates (100%) produced potent biofilms. In order to identify the genes involved in biofilm formation (fimh & mrkd) and the genes responsible for adhesin in type 1& type 3 fimbriae using traditional PCR method, eleven isolates were chosen for molecular analysis that are powerful biofilm makers and MDR.
Coronary artery disease (CAD) is a major health concern and leading of death in individuals with type 2 diabetes mellitus (T2DM). Glutathione S – Transferase(GST) are known for their broad range of detoxification and in the metabolism of xenobiotics . The role of functional variants of these genes in the development of various disorder is proven. We investigated the possible role of these variants in the development of CAD in T2DM patients. In this case – control study a total of 60 patients (T2DM = 30 ; T2DM – CAD = 30) and 30 controls were included. Serum lipid profiles were measured and DNA was extracted from the blood samples. Multiplex PCR for GSTT1/M1 (present / null) polymorphism, were performed for genotyping of study pa
... Show MoreInformation centric networking (ICN) is the next generation of internet architecture with its ability to provide in-network caching that make users retrieve their data efficiently regardless of their location. In ICN, security is applied to data itself rather than communication channels or devices. In-network caches are vulnerable to many types of attacks, such as cache poisoning attacks, cache privacy attacks, and cache pollution attacks (CPA). An attacker floods non-popular content to the network and makes the caches evict popular ones. As a result, the cache hit ratio for legitimate users will suffer from a performance degradation and an increase in the content’s retrieval latency. In this paper, a popularity variation me
... Show MoreType-1 diabetes is defined as destruction of pancreatic beta cell, virus and bacteria are some environmental factor for this disease. The study included 25 patients with type-1 diabetes mellitus aged between 8 – 25 years from Baghdad hospital and 20 healthy persons as control group. Anti-rubella IgG and IgM, anti-Chlamydia pneumonia IgG and IgM were measured by ELISA technique while anti-CMV antibody were measured by immunofluorescence technique. The aim of current study was to know the trigger factor for type-1 diabetes. There were significant differences (P<0.05) between studied groups according to parameters and the results lead to suggest that Chlamydia pneumonia, CMV and rubella virus may trigger type-1 diabetes mellitus in Iraqi pat
... Show MoreDetecting protein complexes in protein-protein interaction (PPI) networks is a challenging problem in computational biology. To uncover a PPI network into a complex structure, different meta-heuristic algorithms have been proposed in the literature. Unfortunately, many of such methods, including evolutionary algorithms (EAs), are based solely on the topological information of the network rather than on biological information. Despite the effectiveness of EAs over heuristic methods, more inherent biological properties of proteins are rarely investigated and exploited in these approaches. In this paper, we proposed an EA with a new mutation operator for complex detection problems. The proposed mutation operator is formulated und
... Show MoreIn this study negative result of real-time reverse transcription-QPCR (RT-PCR) assay
tests of Influenza virus of nasal screetion and throat swap samples of Iraqi patients
hospitalized with signs and symptoms of an upper respiratory tract infection in Central
Republic Health Laboratory in Iraq were tested for Respiratory Syncytial Virus
infection by RT PCR .Positive samples was 4 out 0f 20 were used .Viral isolation was
done on a monolayer of 70-80% confluent Human Lung Carcinoma Cells (A549) cell
line and incubated at 33ºC for 4 days .Syncytia was observed in 3 positive samples.
In this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i
The prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreDetecting protein complexes in protein-protein interaction (PPI) networks is a challenging problem in computational biology. To uncover a PPI network into a complex structure, different meta-heuristic algorithms have been proposed in the literature. Unfortunately, many of such methods, including evolutionary algorithms (EAs), are based solely on the topological information of the network rather than on biological information. Despite the effectiveness of EAs over heuristic methods, more inherent biological properties of proteins are rarely investigated and exploited in these approaches. In this paper, we proposed an EA with a new mutation operator for complex detection problems. The proposed mutation operator is formulate
... Show MoreBackground: Periodontitis is an inflammatory disease that affects the supporting tissues of the teeth; Smoking is an important risk factor for periodontitis induces alveolar bone loss and cause an imbalance between bone resorption and bone deposition. The purpose of this study is to detect and compare the presence of incipient periodontitis among young smokers and non-smokers by measuring the distance between cement-enamel junction and alveolar crest (CEJ-Ac) using Cone Beam Computed Tomography (CBCT). Material and methods: The total sample composed of fifty two participants, thirty one smokers and twenty one non-smokers (age range 14-22 years). Periodontal parameters: plaque index (PLI), gingival index (GI) were recorded for all teeth exc
... Show More