Preferred Language
Articles
/
BRjfdZQBVTCNdQwCDxkG
Molecular detection of fimH& mrkDgenes of strong biofilm producers & MDR Klebsiella pneumoniae
...Show More Authors

Klebsiella pneumoniae is an adaptable pathogen that forms biofilms on a variety of surfaces. This study's objective was to identify the presence of fimbrial genes (types 1 and 3) in K. pneumoniae strains isolated from various clinical sources based on their antibiotic resistance and ability to form biofilms. According to identification utilizing the vitek 2 technology and confirmation by molecular identification targeting the 16S rRNA gene with a particular primer, forty isolates were identified from clinical specimens. The vitek 2 compact system was utilized to evaluate the antibiotic susceptibility of all the isolates. The findings revealed a range of resistance percentages, including 52.5% for Penicillin, 40.5% for Trimethoprim/Sulfamethoxazole, 34.5% for Cephalosporins, 6.25 % for Fluoroquinolones, and 2.5% for each of Carbapenem, Aminoglycoside, Tetracycline, and Nitrofurantoin. The 96-well microtiter plate technique was utilized to generate biofilms. The results demonstrated that all 40 Klebsiella pneumoniae isolates (100%) produced potent biofilms. In order to identify the genes involved in biofilm formation (fimh & mrkd) and the genes responsible for adhesin in type 1& type 3 fimbriae using traditional PCR method, eleven isolates were chosen for molecular analysis that are powerful biofilm makers and MDR. 

Crossref
View Publication
Publication Date
Sun Oct 15 2023
Journal Name
Journal Of Yarmouk
Artificial Intelligence Techniques for Colon Cancer Detection: A Review
...Show More Authors

Publication Date
Tue Oct 04 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing.Although various image pattern algorithms have been proposed so far that achieved adequate classification,achieving higher accuracy while reducing the computation time remains challenging to date. A robust imagepattern classification method is essential to obtain the desired accuracy. This method can be accuratelyclassify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism.Moreover, to date, most of the existing studies are focused on evaluating their methods based on specificorthogonal moments, which limits the understanding of their potential application to various DiscreteOrthogonal Moments (DOMs). The

... Show More
Publication Date
Fri Jun 30 2023
Journal Name
Iraqi Journal Of Science
Review on Vision Based Real Time Fingertip Detection Approaches
...Show More Authors

    Computer vision is an emerging area with a huge number of applications. Identification of the fingertip is one of the major parts of those areas. Augmented reality and virtual reality are the most recent technological advancements that use fingertip identification. The interaction between computers and humans can be performed easily by this technique. Virtual reality, robotics, smart gaming are the main application domains of these fingertip detection techniques. Gesture recognition is one of the most fascinating fields of fingertip detection. Gestures are the easiest and productive methods of communication with regard to collaboration with the computer. This analysis examines the different studies done in the field of

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Mon Nov 29 2021
Journal Name
Iraqi Journal Of Science
Foreground Object Detection and Separation Based on Region Contrast
...Show More Authors

Foreground object detection is one of the major important tasks in the field of computer vision which attempt to discover important objects in still image or image sequences or locate related targets from the scene. Foreground objects detection is very important for several approaches like object recognition, surveillance, image annotation, and image retrieval, etc. In this work, a proposed method has been presented for detection and separation foreground object from image or video in both of moving and stable targets. Comparisons with general foreground detectors such as background subtraction techniques our approach are able to detect important target for case the target is moving or not and can separate foreground object with high det

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Mar 23 2018
Journal Name
Entropy
Methods and Challenges in Shot Boundary Detection: A Review
...Show More Authors

View Publication
Scopus (59)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Sat Jan 02 2010
Journal Name
Journal Of Al-nahrain University
HIDDEN FEATURES DETECTION USING HISTOGRAM MODIFICATION IN MRI IMAGES
...Show More Authors

Magnetic Resonance Imaging (MRI) uses magnetization and radio waves, rather than x-rays to make very detailed, cross- sectional pictures of the brain. In this work we are going to explain some procedures belongs contrast and brightness improvement which is very important in the improvement the image quality such as the manipulation with the image histogram. Its has been explained in this worked the histogram shrink i.e. reducing the size of the gray level gives a dim low contrast picture is produced, where, the histogram stretching of the gray level was distributed on a wide scale but there is no increase in the number of pixels in the bright region. The histogram equalization has also been discuss together with its effects of the improveme

... Show More
Publication Date
Wed Apr 28 2021
Journal Name
2021 1st Babylon International Conference On Information Technology And Science (bicits)
Enhanced Twitter Community Detection using Node Content and Attributes
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Tue Oct 18 2022
Journal Name
Ieee Access
Plain, Edge, and Texture Detection Based on Orthogonal Moment
...Show More Authors

Image pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM

... Show More
Scopus (9)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
A Decision Tree-Aware Genetic Algorithm for Botnet Detection
...Show More Authors

     In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets  namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from

... Show More
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jul 31 2021
Journal Name
Iraqi Journal Of Science
A Decision Tree-Aware Genetic Algorithm for Botnet Detection
...Show More Authors

     In this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets  namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref