Klebsiella pneumoniae is an adaptable pathogen that forms biofilms on a variety of surfaces. This study's objective was to identify the presence of fimbrial genes (types 1 and 3) in K. pneumoniae strains isolated from various clinical sources based on their antibiotic resistance and ability to form biofilms. According to identification utilizing the vitek 2 technology and confirmation by molecular identification targeting the 16S rRNA gene with a particular primer, forty isolates were identified from clinical specimens. The vitek 2 compact system was utilized to evaluate the antibiotic susceptibility of all the isolates. The findings revealed a range of resistance percentages, including 52.5% for Penicillin, 40.5% for Trimethoprim/Sulfamethoxazole, 34.5% for Cephalosporins, 6.25 % for Fluoroquinolones, and 2.5% for each of Carbapenem, Aminoglycoside, Tetracycline, and Nitrofurantoin. The 96-well microtiter plate technique was utilized to generate biofilms. The results demonstrated that all 40 Klebsiella pneumoniae isolates (100%) produced potent biofilms. In order to identify the genes involved in biofilm formation (fimh & mrkd) and the genes responsible for adhesin in type 1& type 3 fimbriae using traditional PCR method, eleven isolates were chosen for molecular analysis that are powerful biofilm makers and MDR.
Nanocrystalline aluminophosphate AlPO4-5 molecular sieves were synthesized by hydrothermal method (HTS). Synthesis parameters like time and temperature of crystallization were investigated. Type of template (R) and ratio of R/P2O5 were studied also. Characterization of the synthesized AlPO4-5 were done by powder X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), Fourier transform infrared (FTIR), differential scanning calorimetry-thermogravimetry analysis (DSC-TGA), and N2 adsorption-desorption BET analysis. XRD patterns results showed excellent crystallinity for two types of templates, di-n-propylamine (DPA) and tetrapropyl ammonium hydroxide (TPAOH) f
... Show MoreThe aim of this stud to isolate and identified of A. fumigatus from different sources and study the genetic diversity among these isolates by using RAPD and ISSR markers.Collected 20 samples from 7samples were isolated A. fumigatusisolates were characterized depending on its morphological, then extracted DNA from its.RAPD markersrandomly bandingwith sitesof genome more than ISSR markers where the primer OPN-07 achieved discriminative power (19.1) and 43 bands, while ISSR6 achieved discriminative power (17.1) with 32 bands.ISSR were more efficiency in specific binding then RAPD, ISSR primers has great a binding to production unique band, when 9 primers from 01 primers, ISSR9 was produce (5) unique bands, while RAPD markers was low ability
... Show MoreLeishmaniasis is a group of parasitic diseases caused by Leishmania spp., an endemic infectious agent in developing countries, including Iraq. Diagnosis of cutaneous lesion by stained smears, serology or histopathology are inaccurate and unable to detect the species of Leishmania. Here, two molecular typing methods were examined to identify the promastigotes of suspected cutaneous leishmaniasis samples, on a species level. The first was species-specific B6-PCR and the second was ITS1-PCR followed by restriction fragment length polymorphism (RFLP) using restriction enzyme HaeIII. DNA was extracted from in vitro promastigote culture followed by amplification of kDNA by B6 or amplification and digestion of LITSR/L
... Show MoreMycobacterium tuberculosis resistance to rifampicin is mainly mediated through mutations in the rpoB gene. The effects of rpoB mutations are relieved by secondary mutations in rpoA or rpoC genes. This study aims to identify mutations in rpoB, rpoA, and rpoC genes of Mycobacterium tuberculosis isolates and clarify their contribution to rifampicin resistance. Seventy isolates were identified by acid-fast bacilli smear, Genexpert assay, and growth on Lowenstein Jensen medium. Drug susceptibility, testing was performed by the proportional method. DNA extraction, PCR, and sequencing were accomplished for the entire rpoA, rpoB, and
... Show MorePseudomonas aeruginosa is a Gram-negative opportunistic pathogen and a model bacterium for studying virulence and bacterial social traits. While it can be isolated in low numbers from a wide variety of environments including soil and water, it can readily be found in almost any human/animal-impacted environment. It is a major cause of illness and death in humans with immunosuppressive and chronic conditions, and infections in these patients are difficult to treat due to a number of antibiotic resistance mechanisms and the organism’s propensity to form multicellular biofilms. One hundred twenty clinical samples and forty hospital environmental samples (various sources) were collected from hospitals in Baghdad city during the period from Oc
... Show MoreAcinetobacter baumannii received attention for its multi-drug resistant associated with many severe infections and outbreaks in clinical environment. The aims of the study are to investigate the antibiotic susceptibility profile of clinically isolated A. baumannii, biofilm production, and the efficiency of Low Frequency Ultrasound (LFU) and honey to attenuate biofilm production. A total of 100 samples were taken from different sources from Baghdad hospitals. The susceptibility patterns revealed the percentage of pan drug resistant (PDR) isolates were 1.5 %, 72.7 % were extended drug resistant (XDR), 16.7 % were multidrug resistant (MDR), and 9.1 % were non MDR and sensitive to most antibiotics used. The ability to form
... Show MoreOne of the most important virulence factors in Pseudomonas aeruginosa is biofilm formation, as it works as a barrier for entering antibiotics into the bacterial cell. Different environmental and nutritional conditions were used to optimize biofilm formation using microtitre plate assay by P. aeruginosa. The low nutrient level of the medium represented by tryptic soy broth (TSB) was better in biofilm formation than the high nutrient level of the medium with Luria Broth (LB). The optimized condition for biofilm production at room temperature (25 °C) is better than at host temperature (37 °C). Moreover, the staining with 0.1% crystal violet and reading the biofilm with wavelength 360 are considered essential factors in
... Show MoreStaphylococcus aureus is a common pathogenic agent due to its ability to cause various types of infections, ranging from mild skin infections to sever systemic diseases. One of the most virulence factors of this bacterium is its ability to from biofilms on solid surfaces by anchoring the planktonic cells and by producing a protective layer of extra polymeric substances. Biofilm formation is controlled through many genes. The most important ones are icaA and icaD. Dentures are prosthetic devices that are made of different materials to replace lost teeth. The aim of this study is to examine the ability of different types of denture materials to support the biofilm formation of S. aureus at phenotypic level by detecting ba
... Show More