In this work, the pseudoparabolic problem of the fourth order is investigated to identify the time -dependent potential term under periodic conditions, namely, the integral condition and overdetermination condition. The existence and uniqueness of the solution to the inverse problem are provided. The proposed method involves discretizing the pseudoparabolic equation by using a finite difference scheme, and an iterative optimization algorithm to resolve the inverse problem which views as a nonlinear least-square minimization. The optimization algorithm aims to minimize the difference between the numerical computing solution and the measured data. Tikhonov’s regularization method is also applied to gain stable results. Two examples are introduced to explain the reliability of the proposed scheme. Finally, the results showed that the time dependent potential terms are successfully reconstructed, stable and accurate, even in inclusion of noise.
Due to the popularity of radar, receivers often “hear” a great number of other transmitters in
addition to their own return merely in noise. The dealing with the problem of identifying and/or
separating a sum of tens of such pulse trains from a number of different sources are often received on
the one communication channel. It is then of interest to identify which pulses are from which source,
based on the assumption that the different sources have different characteristics. This search deals with a
graphical user interface (GUI) to generate the radar pulse in order to use the required radar signal in any
specified location.
The aim of the research is to know the effect of a training program based on interactive teaching strategies on achievement and creative problem solving among fourth-grade students in chemistry of the directorate of education Rusafa first, the sample was divided into two groups, one experimental and numbering (29) students and the other control group numbering (30) students. The experimental group underwent the training program in the first semester of the year (2021-2022) and the control one studied according to the usual method. Two tools were built, the first being an academic achievement test consisting of (40) multiple-choice items, and the second a test of creative problem-solving skills in a chemistry subject and consisting o
... Show MoreMixture experiments are response variables based on the proportions of component for this mixture. In our research we will compare the scheffʼe model with the kronecker model for the mixture experiments, especially when the experimental area is restricted.
Because of the experience of the mixture of high correlation problem and the problem of multicollinearity between the explanatory variables, which has an effect on the calculation of the Fisher information matrix of the regression model.
to estimate the parameters of the mixture model, we used the (generalized inverse ) And the Stepwise Regression procedure
... Show MoreGiven a matrix, the Consecutive Ones Submatrix (C1S) problem which aims to find the permutation of columns that maximizes the number of columns having together only one block of consecutive ones in each row is considered here. A heuristic approach will be suggested to solve the problem. Also, the Consecutive Blocks Minimization (CBM) problem which is related to the consecutive ones submatrix will be considered. The new procedure is proposed to improve the column insertion approach. Then real world and random matrices from the set covering problem will be evaluated and computational results will be highlighted.
This article aims to determine the time-dependent heat coefficient together with the temperature solution for a type of semi-linear time-fractional inverse source problem by applying a method based on the finite difference scheme and Tikhonov regularization. An unconditionally stable implicit finite difference scheme is used as a direct (forward) solver. While by the MATLAB routine lsqnonlin from the optimization toolbox, the inverse problem is reformulated as nonlinear least square minimization and solved efficiently. Since the problem is generally incorrect or ill-posed that means any error inclusion in the input data will produce a large error in the output data. Therefore, the Tikhonov regularization technique is applie
... Show More