The Internet is providing vital communications between millions of individuals. It is also more and more utilized as one of the commerce tools; thus, security is of high importance for securing communications and protecting vital information. Cryptography algorithms are essential in the field of security. Brute force attacks are the major Data Encryption Standard attacks. This is the main reason that warranted the need to use the improved structure of the Data Encryption Standard algorithm. This paper proposes a new, improved structure for Data Encryption Standard to make it secure and immune to attacks. The improved structure of Data Encryption Standard was accomplished using standard Data Encryption Standard with a new way of two key generations. This means the key generation system generates two keys: one is simple, and the other one is encrypted by using an improved Caesar algorithm. The encryption algorithm in the first 8 round uses simple key 1, and from round 9 to round 16, the algorithm uses encrypted key 2. Using the improved structure of the Data Encryption Standard algorithm, the results of this paper increase Data Encryption Standard encryption security, performance, and complexity of search compared with standard Data Encryption Standard. This means the Differential cryptanalysis cannot be performed on the cipher-text.
Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the
... Show MoreFor several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls sh
... Show MoreAn Optimal Algorithm for HTML Page Building Process
Solid waste is a major issue in today's world. Which can be a contributing factor to pollution and the spread of vector-borne diseases. Because of its complicated nonlinear processes, this problem is difficult to model and optimize using traditional methods. In this study, a mathematical model was developed to optimize the cost of solid waste recycling and management. In the optimization phase, the salp swarm algorithm (SSA) is utilized to determine the level of discarded solid waste and reclaimed solid waste. An optimization technique SSA is a new method of finding the ideal solution for a mathematical relationship based on leaders and followers. It takes a lot of random solutions, as well as their outward or inward fluctuations, t
... Show MoreA novel median filter based on crow optimization algorithms (OMF) is suggested to reduce the random salt and pepper noise and improve the quality of the RGB-colored and gray images. The fundamental idea of the approach is that first, the crow optimization algorithm detects noise pixels, and that replacing them with an optimum median value depending on a criterion of maximization fitness function. Finally, the standard measure peak signal-to-noise ratio (PSNR), Structural Similarity, absolute square error and mean square error have been used to test the performance of suggested filters (original and improved median filter) used to removed noise from images. It achieves the simulation based on MATLAB R2019b and the resul
... Show More