This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivotal role in expediting diagnosis and treatment processes during medical emergencies. This study introduces an innovative protocol termed collaborative binary Naive Bayes decision tree (CBNBDT) designed to enhance packet classification and transmission prioritization. Through the utilization of this protocol, incoming packets are categorized based on their respective classes, enabling subsequent prioritization. Thorough simulations have demonstrated the superior performance of the proposed CBNBDT protocol compared to baseline approaches.
Background: Lateral cephalometric radiography is commonly used as a standard tool in orthodontic assessment and treatment planning. This study aimed to determine the tongue and surrounding space area in a sample of Iraqi adults with class I dental and skeletal pattern. Materials and methods: The study included thirty healthy subjects (15 males and 15 females) with an age ranged between 23-34 years and class I dental and skeletal pattern with no history of any sleep related disorders. The assessed cephalometric measurement included length and height of the tongue and position of hyoid bone from cervical line. Descriptive statistics were obtained for the data. Genders difference was evaluated by independent sample t-test. Results: There wer
... Show MoreAsthma and obesity are both a major public health problems affecting large numbers of individuals across the globe. Link between obesity and asthma is now considered as a recognized fact, and many epidemiological studies, found that overweight and obese people had a higher chance of developing asthma, with more severe symptoms. Assessment of the relationship between body mass index and asthma control. A cross-sectional study, that included 100 patients diagnosed with asthma, attending the respiratory disease consultatory unit at Baghdad teaching hospital. Body mass index was calculated by (BMI= weight in Kg/Height in m2), and Asthma control was assessed using asthma control test questionnaire forma. Statistical analysis done using, Test of
... Show MoreABSTRACT : Alzheimer’s disease (AD) is one of the most common inflammatory neurodegenerative diseases linked with dementia, it is characterized by the deposition of amyloid beta-peptide (Ab) in the brain. The present study aims to innovate a biochemical relationship between AD and interleukin 38 (IL-38) as an anti-inflammatory cytokine, expose novel mechanisms and concepts regarding other biochemical parameters studied previously or recently in AD patients and also examine the biochemical action of memantine (10 mg daily) on AD patients. Sixty (60) diagnosed AD patients participated in the present study and classified into four (4) groups: G3 were composed of (15) newly diagnosed males (52-78) years / without treatment, G4 composed of (15
... Show MoreWith the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show MoreMany isolated rural communities are located in regions where there is an abundant and reliable supply of solar energy, but where the distance to the nearest power station is many tens or even hundreds of kilometre. It is therefore mainly in these areas that rural electrification is now being provided by PV generators. since Stand-Alone PV generator can offer the most cost-effective and reliable option for providing power needed in remote places. Accordingly these isolated rural canters are fitted with PV for lighting, a refrigerator, a television and socket to supply kitchen appliances
Planning of electrical distribution networks is considered of highest priority at the present time in Iraq, due to the huge increase in electrical demand and expansions imposed on distribution networks as a result of the great and rapid urban development.
Distribution system planning simulates and studies the behavior of electrical distribution networks under different operating conditions. The study provide understanding of the existing system and to prepare a short term development plan or a long term plan used to guide system expansion and future investments needed for improved network performance.
The objective of this research is the planning of Al_Bayaa 11 kV distribution network in Baghdad city bas
... Show MoreThe objective of this research is employ the special cases of function trapezoid in the composition of fuzzy sets to make decision within the framework of the theory of games traditional to determine the best strategy for the mobile phone networks in the province of Baghdad and Basra, has been the adoption of different periods of the functions belonging to see the change happening in the matrix matches and the impact that the strategies and decision-making available to each player and the impact on societ
... Show MoreAlthough the number of stomach tumor patients reduced obviously during last decades in western countries, but this illness is still one of the main causes of death in developing countries. The aim of this research is to detect the area of a tumor in a stomach images based on fuzzy clustering. The proposed methodology consists of three stages. The stomach images are divided into four quarters and then features elicited from each quarter in the first stage by utilizing seven moments invariant. Fuzzy C-Mean clustering (FCM) was employed in the second stage for each quarter to collect the features of each quarter into clusters. Manhattan distance was calculated in the third stage among all clusters' centers in all quarters to disclosure of t
... Show More