Preferred Language
Articles
/
BRcVEZIBVTCNdQwCrp4p
A novel fusion-based approach for the classification of packets in wireless body area networks
...Show More Authors

This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivotal role in expediting diagnosis and treatment processes during medical emergencies. This study introduces an innovative protocol termed collaborative binary Naive Bayes decision tree (CBNBDT) designed to enhance packet classification and transmission prioritization. Through the utilization of this protocol, incoming packets are categorized based on their respective classes, enabling subsequent prioritization. Thorough simulations have demonstrated the superior performance of the proposed CBNBDT protocol compared to baseline approaches.

Scopus Crossref
View Publication
Publication Date
Sat May 19 2012
Journal Name
Wireless Personal Communications
Stable-Aware Evolutionary Routing Protocol for Wireless Sensor Networks
...Show More Authors

Scopus (36)
Crossref (28)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Sensors
Sequential Monte Carlo Localization Methods in Mobile Wireless Sensor Networks: A Review
...Show More Authors

The advancement of digital technology has increased the deployment of wireless sensor networks (WSNs) in our daily life. However, locating sensor nodes is a challenging task in WSNs. Sensing data without an accurate location is worthless, especially in critical applications. The pioneering technique in range-free localization schemes is a sequential Monte Carlo (SMC) method, which utilizes network connectivity to estimate sensor location without additional hardware. This study presents a comprehensive survey of state-of-the-art SMC localization schemes. We present the schemes as a thematic taxonomy of localization operation in SMC. Moreover, the critical characteristics of each existing scheme are analyzed to identify its advantages

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Journal Of Materials Chemistry A
A novel approach to fabricate zeolite membranes for pervaporation processes
...Show More Authors

A method has been demonstrated to synthesise effective zeolite membranes from existing crystals without a hydrothermal synthesis step.

View Publication
Scopus (26)
Crossref (24)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Lightweight route adjustment strategy for mobile sink wireless sensor networks
...Show More Authors

<span>As a result of numerous applications and low installation costs, wireless sensor networks (WSNs) have expanded excessively. The main concern in the WSN environment is to lower energy consumption amidst nodes while preserving an acceptable level of service quality. Using multi-mobile sinks to reduce the nodes' energy consumption have been considered as an efficient strategy. In such networks, the dynamic network topology created by the sinks mobility makes it a challenging task to deliver the data to the sinks. Thus, in order to provide efficient data dissemination, the sensor nodes will have to readjust the routes to the current position of the mobile sinks. The route re-adjustment process could result in a significant m

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sun Aug 01 2021
Journal Name
Telkomnika
Proposed different relay selection schemes for improving the performance of cooperative wireless networks
...Show More Authors

Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Tue Jul 09 2024
Journal Name
Diagnostics
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea

... Show More
View Publication
Scopus (2)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Jul 01 2016
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Survey Smoothly Fiber-Wireless (FiWi) Accessing Wireless Networks: Convergence and Challenges
...Show More Authors

<p> Traditionally, wireless networks and optical fiber Networks are independent of each other. Wireless networks are designed to meet specific service requirements, while dealing with weak physical transmission, and maximize system resources to ensure cost effectiveness and satisfaction for the end user. In optical fiber networks, on the other hand, search efforts instead concentrated on simple low-cost, future-proofness against inheritance and high services and applications through optical transparency. The ultimate goal of providing access to information when needed, was considered significantly. Whatever form it is required, not only increases the requirement sees technology convergence of wireless and optical networks but

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Intelligent Automation &amp; Soft Computing
A Novel Classification Method with Cubic Spline Interpolation
...Show More Authors

View Publication
Scopus (9)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref