This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivotal role in expediting diagnosis and treatment processes during medical emergencies. This study introduces an innovative protocol termed collaborative binary Naive Bayes decision tree (CBNBDT) designed to enhance packet classification and transmission prioritization. Through the utilization of this protocol, incoming packets are categorized based on their respective classes, enabling subsequent prioritization. Thorough simulations have demonstrated the superior performance of the proposed CBNBDT protocol compared to baseline approaches.
In every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the sho
... Show MoreGeophysical data interpretation is crucial in characterizing the subsurface structure. The Bouguer gravity map analysis of the W-NW region of Iraq serves as the basis for the current geophysical research. The Bouguer gravity data were processed using the Power Spectrum Analysis method. Four depth slices have been acquired after the PSA process, which are: 390 m, 1300 m, 3040 m, and 12600 m depth. The gravity anomaly depth maps show that shallow-depth anomalies are mainly related to the sedimentary cover layers and structures, while the gravity anomaly of the deeper depth slice of 12600 m is more presented to the basement rocks and mantle uplift. The 2D modeling technique was used for
A novel demountable shear connector is proposed to link a concrete slab to steel sections in a way that resulting steel-concrete composite floor is demountable, i.e. it can be easily dismantled at the end of its service life. The proposed connectors consist of two parts: the first part is a hollow steel tube with internal threads at its lower end. The second part is a compatible partially threaded bolted stud. After linking the stud to the steel section, the hollow steel tube can be fastened over the threaded stud, which create a complete demountable shear connector. The connector is suitable for use in both composite bridges and buildings, and using cast in-situ slabs, precast solid slabs, or hollow-core precast slabs. A series of push-off
... Show MoreThe mass collision energy loss (dE/dX), the mass radiative energy loss (Srad/) and the total mass stopping power of electrons in the energy range of 0.01 MeV up to 1000 MeV has been calculated for Lung, Urea and Skin. The results of the present work for the mass collision stopping power of electrons in Lung, Urea and Skin are in excellent agreement with the standard results given by ESTAR program, where the maximum percentage error between the present calculated values and that of ESTAR program in Lung tissue, Urea and Skin tissue is 0.27%, 0.3% and 0.8% respectively. The mass radiative energy loss of electrons in the same energy range is also calculated using a modified equation, and the results are found to be in very good agreem
... Show MoreHeart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show MoreSignature verification involves vague situations in which a signature could resemble many reference samples or might differ because of handwriting variances. By presenting the features and similarity score of signatures from the matching algorithm as fuzzy sets and capturing the degrees of membership, non-membership, and indeterminacy, a neutrosophic engine can significantly contribute to signature verification by addressing the inherent uncertainties and ambiguities present in signatures. But type-1 neutrosophic logic gives these membership functions fixed values, which could not adequately capture the various degrees of uncertainty in the characteristics of signatures. Type-1 neutrosophic representation is also unable to adjust to various
... Show More