This abstract focuses on the significance of wireless body area networks (WBANs) as a cutting-edge and self-governing technology, which has garnered substantial attention from researchers. The central challenge faced by WBANs revolves around upholding quality of service (QoS) within rapidly evolving sectors like healthcare. The intricate task of managing diverse traffic types with limited resources further compounds this challenge. Particularly in medical WBANs, the prioritization of vital data is crucial to ensure prompt delivery of critical information. Given the stringent requirements of these systems, any data loss or delays are untenable, necessitating the implementation of intelligent algorithms. These algorithms play a pivotal role in expediting diagnosis and treatment processes during medical emergencies. This study introduces an innovative protocol termed collaborative binary Naive Bayes decision tree (CBNBDT) designed to enhance packet classification and transmission prioritization. Through the utilization of this protocol, incoming packets are categorized based on their respective classes, enabling subsequent prioritization. Thorough simulations have demonstrated the superior performance of the proposed CBNBDT protocol compared to baseline approaches.
The shear strength of soil is one of the most important soil properties that should be identified before any foundation design. The presence of gypseous soil exacerbates foundation problems. In this research, an approach to forecasting shear strength parameters of gypseous soils based on basic soil properties was created using Artificial Neural Networks. Two models were built to forecast the cohesion and the angle of internal friction. Nine basic soil properties were used as inputs to both models for they were considered to have the most significant impact on soil shear strength, namely: depth, gypsum content, passing sieve no.200, liquid limit, plastic limit, plasticity index, water content, dry unit weight, and initial
... Show MoreAbstract
This research aims to analyze the reality of the production process in an assembly line Cars (RUNNA) in the public company for the automotive industry / Alexandria through the use of some Lean production tools, and data were collected through permanence in the company to identify the problems of the line in order to find appropriate to adopt some Lean production tools solutions, and results showed the presence of Lead time in some stations, which is reflected on the customer's waiting time to get the car, as well as some of the problems existing in the car produced such as high temperature of the car, as the company does not take into account customer preferences,
... Show MoreAbstract
The current research aims to construct a scale for the nine types of students’ personality according to Rob Fitzel model. To do this, (162) items were formed that present the nine types of personality with (18) items for each type. To test the validity of the scale, a sample of (584) students of Al-Mustansrya University were chosen. The data of their responses was analyzed by using factor analysis. The findings explored (9) factors as one factor for each type of personality with (12) items for each one. Then, the reliability of the scale was found by using the test-retest method and Alfa Cronbach method.
This research aims to examine the effectiveness of a teaching strategy based on the cognitive model of Daniel in the development of achievement and the motivation of learning the school mathematics among the third intermediate grade students in the light of their study of "Systems of Linear Equations”. The research was conducted in the first semester (1439/1440AH), at Saeed Ibn Almosaieb Intermediate School, in Arar, Saudi Arabia. A quasi-experimental design has been used. In addition, a (pre & post) achievement test (20 Questions) and a (pre & post) scale of learning motivation to the school mathematics (25 Items) have been applied on two groups: a control group (31Students), and an experimental group (29 Students). The resear
... Show MoreAbstract
In this work, two algorithms of Metaheuristic algorithms were hybridized. The first is Invasive Weed Optimization algorithm (IWO) it is a numerical stochastic optimization algorithm and the second is Whale Optimization Algorithm (WOA) it is an algorithm based on the intelligence of swarms and community intelligence. Invasive Weed Optimization Algorithm (IWO) is an algorithm inspired by nature and specifically from the colonizing weeds behavior of weeds, first proposed in 2006 by Mehrabian and Lucas. Due to their strength and adaptability, weeds pose a serious threat to cultivated plants, making them a threat to the cultivation process. The behavior of these weeds has been simulated and used in Invas
... Show MoreAbstract
The aim of the research is to identify the level of awareness and emotional experience among university students and to identify the effect of the educational program based on (Guttmann) model for developing awareness and emotional experience among university students by verifying the validity of the following zero hypotheses: 1) There are no statistically significant differences in the development of awareness and emotional experience among university students at the level of (0.05) between the mean scores of the experimental group in the pre and post-tests. 2) There are no statistically significant differences in the development of awareness and emotional experience among university students at the lev
... Show More