Abstract: Mixed ligand Mn(II), Co(II), Ni(II), Cu (II), Zn(II), and Cd(II) complexes with (TMAP) Schiff base ligand and (8HQ) have been composition and analyzed. Diagnosis by, melting point, solubility, Electronic, mass and IR-spectroscopic studies, conductivity elemental, thermoanalytical analysis displayed the forming of mononuclear complexes. Spectral studies results suggest an octahedral system or the metal (II) mixed complexes. The detainments of molar conductance of the mixed complexes in DMF coincide to electrolytic nature of the mixed complexes, consequently, these complexes could be subedited as [M(TMAP)(8Q)(H2O)]nX.yH2O (M=Co(II) and Cu(II) complexes(where n = 1, y = 0 ); [M(TMAP)(8Q)(H2O)]nX.yH2O (M = (where n = 1, y = 1 for Ni(II) complex and n = 1, y = 2 for Cd(II) complex) and [M(TMAP)(8Q)(H2O)]nX.yH2O (M = Mn(II) (n = y = 2) and Fe(III) (n = 3, y = 0)). On the principle of electronic spectra, magnetic moment studies, an octahedral structure has been designated for the metal complexes. Further parameters of the thermodynamic and kinetic for the various stages of decomposition were determined to utilize the Horowitz–Metzger and Coats–Redfern ways. Then, the ligand in rapprochement to metal complexes is tested for their anticancer and antimicrobial efficacy with breastic cancer cell line. The outcomes showed that the metal complexes are more active than the parent TMAP ligand but more active than (8HQ) free ligand. In these complexes, the metal ion chalets to the ligand through the azomethine linkage, (NH2) and imine(C=N) groups of trimethoprim drug. The outcomes of conductivity related that the complexes were all 1:1 electrolytes except Mn(II) and Zn(II) complexes are non- electrolyte. The metal complexes were tested for their antimicrobial efficacies applying agar disc diffusion method and the outcomes related that they were active with bacteria pieces screened.
Mixed metal ligand complexes is reported with Curcumin (CUM) as a primary ligand and 1:10-phenanthroline (phen ) as secondary ligand. The structures of these complexes are confirmed by using FT-IR and UV- electronic spectroscopies, magnetic moments, melting points , molar conductivity measurements .and the metal % analysis revealed that the complexes analyze indicates a six coordinated as[M(CUM)( Phen)2]Cl, M=Mn (II), Co(II), Ni(II),Cu(II) ,Zn(II) , Cd(II) , Hg(II) and [M’ (CUM)( Phen)2]Cl2 M’= Cr(III) &. Fe(III). In-vitro antimicrobial studies on ( Curcumin and 1:10-phenanthroline ligands and mixed metal ligand complexes against {(Bacillus subtilis (G+) , Esherichia Coli (G-) and as well as antifungal activities against Candida albican
... Show MoreNew ligands, N1, N4-bis (benzo[d]thiazol-2- ylcarbamothioyl) succinamide (L1) and N1, N4- bis (benzylcarbamothioyl)succinamide (L2), derived from succinyl chloride and 2-amino benzothiazole or benzylamine, respectively, have been used to prepare a set of transition metal complexes with the general formula [M2(L)Cl4], where L=L1 or L2, M = Mn(II), Ni(II), Cu(II), Cd(II), Co(II), Zn(II) or Hg(II). The synthesized compounds were characterized using various analytical techniques including TGA, 13C NMR, mass spectroscopy, 1H and Fourier-transform infrared (FTIR) spectroscopy, magnetic measurement, molar conductivity, electronic spectrum, (%M, %C, %H, %N) and atomic absorption flame (AAF) analysis. The results showed that (L1, L2) bin
... Show MoreNew N2O2 donor kind Schiff basehas been destined and structured by reaction Ampyrone with O-hydroxyacetophenone and Anthranilic acid. The metal complexes of the Schiff base with Mn(II), Hg(II), Ni(II), Cu(II), and Co(II) metal ions were designed and characterized by magnetic susceptibility, elemental analyses, molar conduction, IR, and 1H NMR,UV-Vis spectral metrics.The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar, tetrahedraland octahedral geometries around the central metal ions. All elaborations were accomplished after determination the optimum molar concentration and pH which followed law of Lambert-Beer's in the researches pH scopes. The composition of these complexes were conclude dapprobating to t
... Show MoreThe precursor [W] [2-(2-(naphthalen-5-yl) diazenyl)-4-amino-3-hydroxynaphthalene-1sulfonic acid] was synthesized from reaction of diazonium salt with 1-amino-2-naphtol-4sulfonic acid. Then the tridentate Schiff base ligand type ONO was synthesized from the reaction of the precursor with salicyaldehyde in 1:1 mole ratio to produce the ligand H2L [2-(2-(naphthalen5-yl) diazenyl)-4-(2-hydroxynaphthalen-3-yl)methyleneamino)-3-hydroxy salicyalene-1-sulfonic acid],the reaction achieved in methanol as a solvent under reflux. Spectroscopic methods IR, U.V, 1H,13C-NMR was used to characterize the ligand. Complexes of [CrIII, CoII, NiII and CdII] ions were also prepared through reaction of ligand with metal salts in 2:1 mole ratio at reflux,
... Show MoreA new series of transition metal complexes of Cu(II), Ni(II), Co(II) and Fe(III) have been synthesized from the Schiff base (L1) and (L2) derived from Semicarbazide hydro chloride and 4-chlorobenzaldehyde or 4-bromobenzaldehyde. The structural features have been arrived from their elemental analyses, magnetic susceptibility, molar conductivity, IR, UV-Vis. and 1H NMR spectral studies. The data show that the complexes have composition of [M(L)2](NO3)2 and [Fe(L)2 (NO3)2](NO3) where the M=Co(II),Ni(II) and Cu(II) ;L=L1and L2 type. The magnetic susceptibility and UV-Vis spectral data of the complexes suggest a square planer geometry for Co(II) and Cu(II) but Fe(III) octahedral geometry and Ni(II) tetrahedral geometry around the central metal i
... Show MoreMetal (III) and (II) coordination compounds of o- phenylenediamine, oxalic acid dihydrate and 8-hydroxyquinoline were synthesized for mixed ligand complexes and characterized using FT-IR, UV-Vis and mass spectra, atomic absorption, elemental analysis, electric conductance and magnetic susceptibility measurements. In addition, thermal behavior (TGA) of the metal complexes (1-6) showed good agreement with the formula suggested from the analytical data. The stoichiometric reaction between the metal (III) and (II) ions with three various ligands in molar ratio at aqueous ethyl alchol for (1:1:1:1) (M: O-PDA: OA: 8-HQ) [where M = Cr+3, Mn+2, Co+2, Ni+2. Cu+2 and Zn+2; O-PDA = O-Phenylenediamine; OA = Oxalic acid and 8-HQ = 8-Hydroxyquinoline]. R
... Show MoreMetal (III) and (II) coordination compounds of o- phenylenediamine, oxalic acid dihydrate and 8-hydroxyquinoline were synthesized for mixed ligand complexes and characterized using FT-IR, UV-Vis and mass spectra, atomic absorption, elemental analysis, electric conductance and magnetic susceptibility measurements. In addition, thermal behavior (TGA) of the metal complexes (1-6) showed good agreement with the formula suggested from the analytical data. The stoichiometric reaction between the metal (III) and (II) ions with three various ligands in molar ratio at aqueous ethyl alchol for (1:1:1:1) (M: O-PDA: OA: 8-HQ) [where M = Cr+3, Mn+2, Co+2, Ni+2. Cu+2 and Zn+2; O-PDA = O-Phenylenediamine; OA = Oxalic acid and 8-HQ = 8-Hydroxyquinoline]. R
... Show MoreThe aim of the work is synthesis and characterization of bidentate ligand [3-(3-acetylphenylamino)-5,5-dimethylcyclohex-3-enone][HL], from the reaction of dimedone with 3-amino acetophenone to produce the ligand [HL], the reaction was carried out in dry benzene as a solvent under reflux. The prepared ligand [HL] was characterized by FT-IR, UV-Vis spectroscopy, 1H, 13C-NMR spectra, Mass spectra, (C.H.N) and melting point. The mixed ligand complexes were prepared from ligand [HL] was used as a primary ligand while 8-hydroxy quinoline [HQ] was used as a secondary ligand with metal ion M(Π).Where M(Π) = (Mn ,Co ,Ni ,Cu ,Zn ,Cd and Pd) at reflux ,using ethanol as a solvent, KOH as a base. Complexes of the composition [M(L)(Q)] with (1
... Show More