Abstract: Mixed ligand Mn(II), Co(II), Ni(II), Cu (II), Zn(II), and Cd(II) complexes with (TMAP) Schiff base ligand and (8HQ) have been composition and analyzed. Diagnosis by, melting point, solubility, Electronic, mass and IR-spectroscopic studies, conductivity elemental, thermoanalytical analysis displayed the forming of mononuclear complexes. Spectral studies results suggest an octahedral system or the metal (II) mixed complexes. The detainments of molar conductance of the mixed complexes in DMF coincide to electrolytic nature of the mixed complexes, consequently, these complexes could be subedited as [M(TMAP)(8Q)(H2O)]nX.yH2O (M=Co(II) and Cu(II) complexes(where n = 1, y = 0 ); [M(TMAP)(8Q)(H2O)]nX.yH2O (M = (where n = 1, y = 1 for Ni(II) complex and n = 1, y = 2 for Cd(II) complex) and [M(TMAP)(8Q)(H2O)]nX.yH2O (M = Mn(II) (n = y = 2) and Fe(III) (n = 3, y = 0)). On the principle of electronic spectra, magnetic moment studies, an octahedral structure has been designated for the metal complexes. Further parameters of the thermodynamic and kinetic for the various stages of decomposition were determined to utilize the Horowitz–Metzger and Coats–Redfern ways. Then, the ligand in rapprochement to metal complexes is tested for their anticancer and antimicrobial efficacy with breastic cancer cell line. The outcomes showed that the metal complexes are more active than the parent TMAP ligand but more active than (8HQ) free ligand. In these complexes, the metal ion chalets to the ligand through the azomethine linkage, (NH2) and imine(C=N) groups of trimethoprim drug. The outcomes of conductivity related that the complexes were all 1:1 electrolytes except Mn(II) and Zn(II) complexes are non- electrolyte. The metal complexes were tested for their antimicrobial efficacies applying agar disc diffusion method and the outcomes related that they were active with bacteria pieces screened.
Diazotization reaction between quinolin-2-ol and (2-chloro-1-(4-(N-(5-methylisoxazol-3-yl)sulfamoyl)phenyl)-2l4-diazyn-1-ium was carried out resulting in ligand-HL, this in turn reacted with the next metal ions (Ni2+, Pt4+, Pd2+, and Mn2+) forming stable complexes with unique geometries such as (tetrahedral for both Ni2+ and Mn2+, octahedral for Pt4+ and square planer for Pd2+ ). The creation of such complexes was detected by employing spectroscopic means involving ultraviolet-visible which proved the obtained geometries, fourier transfer proved the formation of azo group and the coordination with metal ion through it. Pyrolysis (TGA &
... Show MoreKlebsiella pneumoniae are Gram-negative which cause many diseases such as urinary tract infections, respiratory tract infections and septicemia. Inulinase is an enzyme used in food manufacture and pharmaceuticals. Inulinase is used in decreasing lipid ratio and, cholesterol in blood and considered as a prebiotic factor inside intestine. Many microorganisms can produce inulinase, such as yeast, fungi and bacteria; among such bacteria: Bacillus spp., Arthrobacter spp., and Pseudomonas spp. but there are no studies about inulinase production by K. pneumoniae have been reported. So the current study aims at investing the ability of producing and purification inulinase by K. pneumoniae. Method: K. pneumoniae were isolated from many hospitals and
... Show MoreTHE Schiff base reaction played an important role of the condensation reaction between 2-aminophenol and Glyoxylic acid in the presence of calculated amounts of KOH as a catalyst. The reaction has been carried out in ethanol under reflux and stirring condition for 3.5 hrs. All syntheses were carried out under hydrogen gas forming a new potassium (E)-1-hydroxy-2-(2-hydroxyphenylimino)ethanolate ligand type [NO2]. The ligand of the general formula K2[Mn(L2)] type and its Mnп complex K2[Mn(N2O4)] type, has been characterized by spectroscopic methods (F.T-I.R. and U.V-Vis.), elemental analysis (C.H.N) metal content, magnetic susceptibility measurement, Thin-layer chromatography (T.L.C), X-RD powder diffraction, 1H-NMR, 13C-NMR molar conductanc
... Show MoreBinary mixtures of three, heavy oil-stocks was subjected to density measurements at temperatures of 30, 35 and 40 °C. and precise data was acquired on the volumetric behavior of these systems. The results are reported in terms of equations for excess specific volumes of mixtures. The heavy oil-stocks used were of good varity, namely 40 stock, 60 stock, and 150 stock. The lightest one is 40 stock with °API gravity 33.69 while 60 stock is a middle type and 150 stock is a heavy one, with °API gravity 27.74 and 23.79 respectively. Temperatures in the range of 30-40 °C have a minor effect on excess volume of heavy oil-stock binary mixture thus, insignificant expansion or shrinkage is observed by increasing the temperature this effect beco
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. The photoelectrochemical response of TNTAs was evaluated
... Show MoreThe present work involves studying the effect of electrolyte composition [@1= 0.5 wt.% NH4F / 5% H2O / 5% Glycerol (GLY)/ 90% Ethylene Glycol (EG)] and [ @2= 0.5 wt. % NH4F / 5% H2O / 95% Ethylene Glycol (EG)] on the structural and photoelectrochemical properties of titania nanotubes arrays (TNTAs). TNTAs substrates were successfully carried out via anodization technique and were carried out in 40 V for one hour in different electrolytes (@1, and @2). The properties of physicochemical of TNTAs were distinguished via an X-ray Diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), an Energy Dispersive X-ray (EDX), and UV–visible diffuse reflectance. T
... Show MoreThe gamma camera, along with SPECT and PET scanners, is one of the main imaging technologies in nuclear medicine. A collimator is typically constructed from tungsten to provide high absorption of gamma photon energies. It has a hole or holes for imaging. Gamma rays from a radioactive source within the body are emitted in all directions, while the photons required constructing an image travel through the hole. A scintillator is the most common material used to convert the high energy of gamma radiation into a lowenergy optical photon. These detectors are one of the primary secrets to radio-diagnosis in nuclear medicine. The photomultiplier tube (PMT) is a versatile device with extraordinarily highly sensitivity and response. A typical photom
... Show Morethis paper contains preparation of Active carbon surface (AC) from pro so millet grain husks and Loading and activating by Iron oxide and hydrogen peroxide sequentially to obtain surface (ACIPE). The changes of previous processes on Active carbon surface were diagnosed by Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy ( SEM ). These surfaces (AC and ACIPE ) were using as adsorbent for removing of congo red dye from aqueous solutions under certain conditions through batch system. More than one kinetic model was applied to congo red dye adsorption process and it was found that the most kinetic model applied to it is a model ( pseudo second order model).