This study can be considered as un introduction to the idioms and the strategy about the productive partnership development connection, that helps the researcher and the organization in their work in to activate development and the natural sources,manegment,to improve the two sides active connected to the local society, and to use it as easier and smoother participation of the people who work in development field and the natural sources management research, That connection depends mostly upon the capability of researcher and the development worker to increase the ability of individual and local society to specify and analyzing their problems and to try solutions to make their life better with good income.
Data-driven models perform poorly on part-of-speech tagging problems with the square Hmong language, a low-resource corpus. This paper designs a weight evaluation function to reduce the influence of unknown words. It proposes an improved harmony search algorithm utilizing the roulette and local evaluation strategies for handling the square Hmong part-of-speech tagging problem. The experiment shows that the average accuracy of the proposed model is 6%, 8% more than HMM and BiLSTM-CRF models, respectively. Meanwhile, the average F1 of the proposed model is also 6%, 3% more than HMM and BiLSTM-CRF models, respectively.
If feminist philosophy in the context of feminist research focuses on how to produce an alternative knowledge and culture for women and forming anew awareness of their roles in the face of prevailing misconceptions then the topic of Islamic feminism is presented as a philosophical topic in the field of human knowledge to discuss how to produce an alternative knowledge of traditional knowledge prevailing in patriarchal societies to restore the balance of power and authority in the relationship between the sexes to create an effective feminist role in advocating for and defending womenś issues to achieve this Islamic feminism sought to establish an Islamic epistemology .
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreA field experiment was conducted to grow the wheat crop during the fall season 2020 in Karbala province, north of Ain Al-Tamr District in two locations of different textures and parent materials. The first site (calcareous soil) with a sandy loam texture, is located at (44° 40′ 37′) east longitude and (32° 41′ 34′) north latitude, at an altitude of 32 m above sea level, and an area of 20 hectares. As for the second location (gypsum soil) with a loam texture, it is located at a longitude (45° 41′ 39′) east and a latitude (33° 43′ 34′ north) and at an altitude of 33 m above sea level and an area of 20 hectares. To find out the effect of different tillage systems on water productivity and wheat yield under center pivot irri
... Show MoreThis study proposes a hybrid predictive maintenance framework that integrates the Kolmogorov-Arnold Network (KAN) with Short-Time Fourier Transform (STFT) for intelligent fault diagnosis in industrial rotating machinery. The method is designed to address challenges posed by non-linear and non-stationary vibration signals under varying operational conditions. Experimental validation using the FALEX multispecimen test bench demonstrated a high classification accuracy of 97.5%, outperforming traditional models such as SVM, Random Forest, and XGBoost. The approach maintained robust performance across dynamic load scenarios and noisy environments, with precision and recall exceeding 95%. Key contributions include a hardware-accelerated K
... Show More