In this research a computational simulation has been carried out on the design and properties of the electrostatic mirror and a mathematical expression has been suggested to represent the axial potential of an electrostatic mirror. The electron beam path using the Bimurzaev technique had been investigated as mirror trajectory with the aid of Runge – Kutta method. The spherical and chromatic aberration coefficients of mirror has computed and normalized in terms of the focal length. The choice of the mirror depends on the operational requirements. The Electrode shape of mirror two electrodes has been determined by using package SIMION computer program. Computations have shown that the suggested potentials giv
... Show MoreThere is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.
One of the most important problems in the oil production process and when its continuous flow, is emulsified oil (w/o emulsion), which in turn causes many problems, from the production line to the extended pipelines that are then transported to the oil refining process. It was observed that the nanomaterial (SiO2) supported the separation process by adding it to the emulsion sample and showed a high separation rate with the demulsifiers (RB6000) and (sebamax) where the percentage of separation was greater than (90 and 80 )% respectively, and less than that when dealing with (Sodium dodecyl sulfate and Diethylene glycol), the percentage of separation was (60% and 50%) respectively.
The high proportion
... Show MoreThe goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with different thi
... Show MoreThe optical detectors which had been used in medical applications, and especially in radioactive treatments, need to be modified studied for the effects of radiations on them. This study included preparation of the MnS thin films in a way that vacuum thermal evaporation process at room temperature 27°C with thickness (400+-10nm) nm and a sedimentation rate of 0.39nm/sec on glass floors. The thin films prepared as a detector and had to be treated with neutron irradiation to examine the results gained from this process. The results decay X-ray (XRD) showed that all the prepared thin films have a multi-crystalline structure with the dominance of the direction (111), the two samples were irradiated with a neutron irradiation source (241Am-9Be)
... Show MoreIn this research prepare membranes pure silicon carbide (SiC) as well as gas Alloy (ammonia) and using a laser was leaked membrane of glass flooring. To Drasesh optical properties of membranes prepared depending on the technique (Swanepoel) and Adhrt results obtained in general increased permeability pure silicon membranes
The effect of fiber volume fraction of the carbon fiber on the thermal conductivity of the polymer composite material was studied. Different percentages of carbon fibers were used (5%, 10%, 15%, 20%, and 25%). Specimens were made in two groups for unsaturated polyester as a matrix and carbon fibers, first group has parallel arrangement of fibers and the second group has perpendicular arrangement of fibers on the thermal flow, Lee's disk method was used for testing the specimens. This study showed that the values of the of thermal conductivity of the specimens when the fibers arranged in parallel direction was higher than that when the fibers arranged in the perpendicular direction
 
... Show More