The solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, including uniform distribution of the tubes as well as non-uniform distribution, i.e., tubes concentrated at the bottom, middle and the top of the PCM shell. The model was first validated compared with previous experimental work from the literature. The results show that the heat rate removal from the PCM after 16 h was 52.89 W (max) and 14.85 W (min) for the cases of uniform tube distribution and tubes concentrated at the bottom, respectively, for the proposed dimensions of the heat exchanger. The heat rate removal of the system with uniform tube distribution increases when the distance between the tubes and top of the shell reduces, and increased equal to 68.75 W due to natural convection effect. The heat release rate also reduces by increasing the temperature the tubes. The heat removal rate increases by 7.5%, and 23.7% when the temperature increases from 10 °C to 15 °C and 20 °C, respectively. This paper reveals that specific consideration to the arrangement of the tubes should be made to enhance the heat recovery process attending natural convection effects in phase change heat storage systems.
The largest use of x-ray in medical by dentists, employers or persons that needed by patients with specific conditions, lead to higher exposure of x-ray that may cause many diseases. In the present work radiography films have been used in evaluating the efficiency of using unsaturated polyester polymer reinforced with lead oxide (PbO) as shield material for medical x-ray devices, many parameters studied like concentration and thickness that they are increasing the attenuation of x-ray in them. The results show that the attenuation of X-ray increasing with concentration of reinforced material and with thickness, and the optical density decreases with increasing concentration from 0% to 50%, we chose 30% as suitable concentration to increase
... Show MoreSeries of new complexes of the type [M2 (L)Cl4 ] are prepared from the new ligand[N1 ,N4 -bis(benzo[d]thiazol-2- yl)succinamide (L) derived from ethan-1,2-dicarbonyl chloride and 2-aminobenzothiozole,where, M= Ni(ii), Cu(ii) and Zn(ii) alsocomplexes of mix-ligands, the type [M(L)(8-HQ)]Cl, where, M = Ni(ii), Cu(ii) and Zn(ii),8-HQ= 8-Hydroxyquinoline. Chemical forms are obtained from their 1 H, 13CNMR, Mass spectra (for (L)), FT-IR and U.V spectrum, melting point, molar conduct.Using flame (AA), % M is determined in the complexes.The content of C, H, N and S in the (L) and its complexes was specified. Magnetic susceptibility and thermal analysis (TGA) of prepared compounds were measured.The propose geometry for all complexes[M2 (L)Cl4 ] wa
... Show MoreOne of the most difficult tasks in modern medical societies is the process of identifying a cure for many infectious diseases caused by drug-resistant microbes. Therefore, it has become necessary to discover new compounds that work in this regard. The currently prepared Schiff base, derived from thiazole, has a biological activity against bacteria and biofilms and its activity increases when it is associated with copper, zinc and platinum ions and forms metal complexes. This study highlights the synthesis and evaluation of novel biological compounds as inhibitors of bacterial growth and biofilms. A three newly complexes are resulting from the reaction of a new Schiff base ligand (LC) with metal ions (Zn, Cu, Pt). The new ligand (LC)
... Show More1-[4-(4-Acetyl-2-hydroxy-phenylazo)-phenyl]-ethanone (L1) and 1-[3-Hydroxy-4(4-nitro-phenylazo)-phenyl]-ethanone (L2) were readied by combination the diazonium salts of amines with 3-hydroxyacetophenone. (C.H.N) analyses, infrared spectra, UV–vis electronic absorption spectra, 1H and 13CNMR spectral mechanisms are use to identified of the ligands. Complexes of Ni+2 and Cu+2 were performed as well depicted. The formation of complexes has been identified by using atomic absorption of flame, elemental analysis, infrared spectra and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied obeyed the mole ratio and continuous contrast methods, Beer's law followed during a concent
... Show MoreMixed ligand metal complexes of CrIII, FeIII,II, NiII and CuII have been synthesized using 5-chlorosalicylic acid (5-CSA) as a primary ligand and L-Valine (L-Val) as secondary ligand. The metal complexes have been characterized by elemental analysis, electrical conductance, magnetic susceptibility measurements and spectral studies. The electrical conductance studies of the complexes indicate their electrolytic nature. Magnetic susceptibility measurements revealed paramagnetic nature of the all complexes. Bonding
This research investigated the effect of adding two groups of reinforcement materials, including bioactive materials Hydroxyapatite (HA) and halloysite nanoclay and bioinert materials Alumina (AL2O3) and Zirconia (ZrO2), each of them with various weight ratios (1,2,3,4 &5)% to the polymer matrix PMMA. The best ratios were selected, and then a hybrid was preparing Composite red from the best ratios from each group. Thermal properties, including thermal conductivity and Thermomechanical Analysis (TMA) technology, have been studied. The results showed that adding 3% Hydroxyapatite (HA) and 5% halloysite nanoclay to the polymethacrylate (PMMA) mer leads to an increase in thermal conductivity. It was also found from the Thermomechanical Analysis
... Show MoreA multistep synthesis was established for the preparation of a new vanillic acid-1, 2, 4-1triazole-3-thiol conjugate (