The solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, including uniform distribution of the tubes as well as non-uniform distribution, i.e., tubes concentrated at the bottom, middle and the top of the PCM shell. The model was first validated compared with previous experimental work from the literature. The results show that the heat rate removal from the PCM after 16 h was 52.89 W (max) and 14.85 W (min) for the cases of uniform tube distribution and tubes concentrated at the bottom, respectively, for the proposed dimensions of the heat exchanger. The heat rate removal of the system with uniform tube distribution increases when the distance between the tubes and top of the shell reduces, and increased equal to 68.75 W due to natural convection effect. The heat release rate also reduces by increasing the temperature the tubes. The heat removal rate increases by 7.5%, and 23.7% when the temperature increases from 10 °C to 15 °C and 20 °C, respectively. This paper reveals that specific consideration to the arrangement of the tubes should be made to enhance the heat recovery process attending natural convection effects in phase change heat storage systems.
The influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreNano gamma alumina was prepared by double hydrolysis process using aluminum nitrate nano hydrate and sodium aluminate as an aluminum source, hydroxyle poly acid and CTAB (cetyltrimethylammonium bromide) as templates. Different crystallization temperatures (120, 140, 160, and 180) 0C and calcinations temperatures (500, 550, 600, and 650) 0C were applied. All the batches were prepared at PH equals to 9. XRD diffraction technique and infrared Fourier transform spectroscopy were used to investigate the phase formation and the optical properties of the nano gamma alumina. N2 adsorption-desorption (BET) was used to measure the surface area and pore volume of the prepared nano alumina, the particle size and the
... Show MoreVisceral leishmaniasis (VL) is a parasitic disease that affects public health. It is described by weight reduction, irregular fever bouts, anemia, and amplification of the spleen and liver.
Three concentrations (15.6, 31.2, and 62.5 μg/mL) were used to find the potency of an aqueous extract of
To know the effect of bio-enhancer (zeolite), biohealth, mineral fertilizers and their interactions, the possibility of replacing mineral fertilizers with bio-enhancers and bio-enhancers, and their effect on some potato yield measurements. A field experiment was conducted at one of the field stations of the College of Agricultural Engineering Sciences, University of Baghdad, near the electronic calculator center, research station (F) in Al-Jadriya region in the loam mixture soil during autumn season 2021-2022 AD, It was designed using a completely randomized block design (RCBD) with three replicates. The factors of the study experiment included three levels of zeolite (0, 6 tons ha-1, and 12 tons ha-1), which were symbolized by (Z0)
... Show MoreThe investigation of the effect of tempering on thermal analysis of
Al-Ti-Si alloy and its composites with MgO and SiC particles was
performed. Thermal analysis was performed before and after
tempering by DSC scan. Optical microscopy was used to identify the
phases and precipitations that may be formed in base alloy and
composites. X-ray diffraction test indicated that the Al3Ti is the main
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some
chemical reactions can be occurred between reinforcements and
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in
Al-Ti/SiC composite. X-ray florescence technique is used to
investigate the chemical composition of the fabricated specimens.
H
Superconducting thin films of Bi1.6Pb0.4Sr2Ca2Cu2.2Zn0.8O10 system were prepared by depositing the film onto silicon (111) substrate by pulsed laser deposition. Annealing treatment and superconducting properties were investigated by XRD and four probe resistivity measurement. The analysis reveals the evolution of the minor phase of the films 2212 phase to 2223 phase, when the film was annealed at 820 °C. Also the films have superconducting behavior with transition temperature ≥90K.
The aim of this study is to understand the effect of addition carbon types on aluminum electrical conductivity which used three fillers of carbon reinforced aluminum at different weight fractions. The experimental results showed that electrical conductivity of aluminum was decreased by the addition all carbon types, also at low weight fraction of carbon black; it reached (4.53S/cm), whereas it was appeared highly increasing for each carbon fiber and synthetic graphite. At (45%) weight fraction the electrical conductivity was decreased to (4.36Scm) and (4.27Scm) for each carbon fiber and synthetic graphite, respectively. While it was reached to maximum value with carbon black. Hybrid composites were investigated also; the results exhibit tha
... Show More