The introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The proposed method can determine the damage variables at the start of the loading process, and this variable continues to increase as the load progresses until complete failure. The results obtained using this method were assessed through previous studies, whereas three case studies for concrete specimens and reinforced concrete structural elements (columns and gable beams) were considered. Additionally, finite element models were also developed and verified. The results revealed good agreement in each case. Furthermore, the results show that the proposed method outperforms other methods in terms of damage prediction, particularly when damage is calculated using the stress ratio. Doi: 10.28991/CEJ-2022-08-02-03 Full Text: PDF
There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show MoreHigh Q-factor based on absorption can be achieved by tuning (the reflection and the transition percentage). In this work, the simple design and simulated in S-band have been investigated. The simulation results of G-shape resonator are shown triple band of absorption peaks 60%, 91.5%, and 70.3%) at resonance frequency 2.7 GHz, 3.26 GHz, and 4.05 GHz respectively. The results exhibited very high of the Q-factor ( 271 ) at resonance frequency ( 3.26 GHz ). The high Q-factor can be used to enhance the sensor sensing, narrowband band filter and image sensing.
In the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harn
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreThe unconventional techniques called “the quick look techniques”, have been developed to present well log data calculations, so that they may be scanned easily to identify the zones that warrant a more detailed analysis, these techniques have been generated by service companies at the well site which are among the useful, they provide the elements of information needed for making decisions quickly when time is of essence. The techniques used in this paper are:
- Apparent resistivity Rwa
- Rxo /Rt
The above two methods had been used to evaluate Nasiriyah oil field formations (well-NS-3) to discover the hydrocarbon bearing formations. A compu
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreThis paper proposes a completion that can allow fracturing four zones in a single trip in the well called “Y” (for confidential reasons) of the field named “X” (for confidential reasons). The steps to design a well completion for multiple fracturing are first to select the best completion method then the required equipment and the materials that it is made of. After that, the completion schematic must be drawn by using Power Draw in this case, and the summary installation procedures explained. The data used to design the completion are the well trajectory, the reservoir data (including temperature, pressure and fluid properties), the production and injection strategy. The results suggest that multi-stage hydraulic fracturing can
... Show MoreThis work presents a symmetric cryptography coupled with Chaotic NN , the encryption algorithm process the data as a blocks and it consists of multilevel( coding of character, generates array of keys (weights),coding of text and chaotic NN ) , also the decryption process consists of multilevel (generates array of keys (weights),chaotic NN, decoding of text and decoding of character).Chaotic neural network is used as a part of the proposed system with modifying on it ,the keys that are used in chaotic sequence are formed by proposed key generation algorithm .The proposed algorithm appears efficiency during the execution time where it can encryption and decryption long messages by short time and small memory (chaotic NN offer capacity of m
... Show MorePhotonic Crystal Fiber (PCF) based on the Surface Plasmon Resonance (SPR) effect has been proposed to detect polluted water samples. The sensing characteristics are illustrated using the finite element method. The right hole of the right side of PCF core has been coated with chemically stable gold material to achieve the practical sensing approach. The performance parameter of the proposed sensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of refractive index of analyte. In the sensing range of 1.33 to 1.3624, maximum sensitivities of 1360.2 nm ∕ RIU and 184 RIU−1 are achieved with the high sensor resolutions of 7
... Show More