The introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The proposed method can determine the damage variables at the start of the loading process, and this variable continues to increase as the load progresses until complete failure. The results obtained using this method were assessed through previous studies, whereas three case studies for concrete specimens and reinforced concrete structural elements (columns and gable beams) were considered. Additionally, finite element models were also developed and verified. The results revealed good agreement in each case. Furthermore, the results show that the proposed method outperforms other methods in terms of damage prediction, particularly when damage is calculated using the stress ratio. Doi: 10.28991/CEJ-2022-08-02-03 Full Text: PDF
Background: The main aim of the present study is to qualify and quantify voids formation of root canals obturated with GuttaCore (GC) and experimental Hydroxyapatite polyethylene (HA/PE) as new carrier-based root canal fillings by using micro computed tomography scan. Materials and methods: In the present study, eight straight single-rooted human permanent premolar teeth are selected and disinfected, then stored in distilled water. The teeth decoronated leaving a root length of 12mm each. The root canals instrumented by using crown down technique and the apical diameter of the root canal prepared to a size # 30/0.04 for achieving standardized measurements. A 5mL of 17% EDTA used to remove the smear layer followed by 5mL of 2.5% NaOCl and r
... Show MoreOne of the most popular and legally recognized behavioral biometrics is the individual's signature, which is used for verification and identification in many different industries, including business, law, and finance. The purpose of the signature verification method is to distinguish genuine from forged signatures, a task complicated by cultural and personal variances. Analysis, comparison, and evaluation of handwriting features are performed in forensic handwriting analysis to establish whether or not the writing was produced by a known writer. In contrast to other languages, Arabic makes use of diacritics, ligatures, and overlaps that are unique to it. Due to the absence of dynamic information in the writing of Arabic signatures,
... Show MoreDC glow discharges were generated between a thin cylindrical anode and a flat cathode, streamers are thought to propagate by photo-ionization; the parameters of photo-ionization depend on the He: CO ratio. Therefore we study streamers in He ( 90%, 80% and 70% ) with (10%, 20% and 30%) CO respectively. The streamer diameter is essentially the change by increase for similar voltage and pressure in all He-CO mixtures.
The study aimed at identifying the strategic gaps in the actual reality of the management of public organizations investigated to determine the strategy used based on the study model. The study relied on the variable of the general organization strategy in its dimensions (the general organization strategy, the organization's political strategy and the defense strategy of the organization) The sample of the study was (General Directorate of Traffic, Civil Status Directorate and Civil Defense Directorate), formations affiliated to the Ministry of the Interior, for the importance of the activity carried out by these public organizations by providing them In order to translate the answers into a quantitative expression in the analysi
... Show MoreStructural buildings consist of concrete and steel, and these buildings have confronted many challenges from various aggressive environments against the materials manufactured from them. It contains high water levels and buildings whose concrete cover may be damaged and thus lead to the deterioration and corrosion of steel. It was important to have an alternative to steel, such as the glass fiber reinforced polymer (GFRP), which is distinguished by its great effectiveness in resisting corrosion, as well as its strong tensile resistance. Still, one of its drawbacks is that it has a low modulus of elasticity. This research article aims to conduct a numerical study using the nonlinear fi
Iron , Cobalt , and Nickel powders with different particle sizes were subjected to sieving and He-Ne laser system to determine the particle size . 1wt% from each powders was blended carefully with 99wt% from Iraqi oil . Microscopic examination were carried for all samples to reveal the particle size distribution . A Siemens type SRS sequential wavelength dispersive(WDS) X-ray spectrometer was used to analyze all samples , and the XRF intensity were determined experimentally and theoretically for all suspended samples , Good agreement between theoretical and experimental results were found .
This paper demonstrates an experimental and numerical study aimed to compare the influence of openings of different configurations on the flexural behavior of prestressed concrete rafters. The experimental program consisted of testing six simply supported prestressed concrete rafters; 5 rafters are perforated, and the other one is solid as a reference. All rafters were tested under monotonic midpoint load. The variable which has been investigated in this work was the opening’s configuration (quadrilateral or circular) with the same upper and lower chords depths. The results indicate improvement in the beam flexural behavior using the circular openings compared to the quadrilateral o