This work was conducted to study the extraction of pelletierine sulphate from Punica granatum L. roots by liquid membrane techniques. Pelletierine sulphate is used widely in medicine. The general behavior of extraction process indicates that pelletierine conversion increased with increasing the number of stages and the discs rotation speed but high rotation speed was not favored because of the increased risk of droplet formation during the operation. The pH of feed and acceptor solution was also important. The results exhibit that the highest pelletierine conversion was obtained when using two stages,(10 rpm) discs speed of stainless steel discs,(pH= 9.5) of feed solution and (pH= 2) of acceptor solution in n-decane. Assuming the existence of two thin reaction layers in the feed and stripping solutions, mathematical model was developed to describe the pelletierine transport. On the basic of the experimental data obtained under various conditions and the model proposed, it was found that the solute transfer into the liquid membrane is mainly diffusion-controlled.
Leuconostoc bacteria was isolated from local pickled cabbage (Brassica oleracea capitata) and identified as Leuconostoc mesenteroides by morphology,biochemical and physiological. The local isolated L. mesenteroides bacteria under the optimal conditions of dextran production showed that, the highly production of dextran was 7.7g achieved by using a modified natural media comprised of 100ml whey, 10g refined sugar, 0.5g heated yeast extract, 0.01g CaCl2, 0.001g MgSO4, 0.001g MnCl2 and 0.001g NaCl at pH 6 and 25̊C for 24 hr of fermentation and by using 1ᵡ106 cell/ml as initial inoculums volume. Some applications in food technology (Ice cream, Loaf, Ketchup and Beef preservation) have been performed with processed dextran. The result
Background: Helicobacter pylori are important gastrointestinal pathogen associated with gastritis, peptic ulcers, and an increased risk of gastric carcinoma. There are several popular methods for detection of H. pylori (invasive and non-invasive methods) each having its own advantages, disadvantages, and limitations, and by using PCR technique the ability to detect H. pylori in saliva samples offers a potential for an alternative test for detection of this microorganism. Materials and methods: The study sample consists of fifty participants of both genders, who undergo Oesophageo-gastrodudenoscopy at the Gastroenterology Department of Al-Kindy Teaching Hospital Baghdad/ Iraq, during five months period from January 2014 to May 2014. They we
... Show More
In this work, a novel technique to obtain an accurate solutions to nonlinear form by multi-step combination with Laplace-variational approach (MSLVIM) is introduced. Compared with the traditional approach for variational it overcome all difficulties and enable to provide us more an accurate solutions with extended of the convergence region as well as covering to larger intervals which providing us a continuous representation of approximate analytic solution and it give more better information of the solution over the whole time interval. This technique is more easier for obtaining the general Lagrange multiplier with reduces the time and calculations. It converges rapidly to exact formula with simply computable terms wit
... Show MoreThis paper proposes an on-line adaptive digital Proportional Integral Derivative (PID) control algorithm based on Field Programmable Gate Array (FPGA) for Proton Exchange Membrane Fuel Cell (PEMFC) Model. This research aims to design and implement Neural Network like a digital PID using FPGA in order to generate the best value of the hydrogen partial pressure action (PH2) to control the stack terminal output voltage of the (PEMFC) model during a variable load current applied. The on-line Particle Swarm Optimization (PSO) algorithm is used for finding and tuning the optimal value of the digital PID-NN controller (kp, ki, and kd) parameters that improve the dynamic behavior of the closed-loop digital control fue
... Show MoreIn this paper Zener diode was designed by mixing three mixing ratios of Ag2O(1-x)ZnO(x), where x is 0.5, 0.3, and 0.1, that are deposited on a p-type porous silicon using laser induced plasma technique at room temperature (RT). The results of the Zener diode showed a decrease in knee and Zener voltage when the mixing ratio of Ag2O(1-x)ZnO(x) structure was increased. Nanofilms of 200nm thickness were prepared from pure ZnO and Ag2O as well as Ag2O(1-x)ZnO(x) with three maxing ratios and deposited on glass slides at RT to analyze the structure and optical properties. The structures of Ag2O and Ag2O
The goal of this work is to study plasma parameters for Fe plasma generated by exploding wire (EEW) in carbon nanotubes-water colloid with three current values (50, 100 and 150)A. In this research, the plasma electron temperature (Te), the electron density (ne), electron density (ne), plasma frequency(f p), Debye length (λD) and Debye number (ND) were found for Fe produced by Arc discharge plasma. Boltzmann plot was used to calculate the plasma electron temperature (Te);electron density (ne) was calculated from Stark broadening. It was found that the electron temperature values increased from (0.4
... Show MoreThe research involved a rapid, automated and highly accurate developed CFIA/MZ technique for estimation of phenylephrine hydrochloride (PHE) in pure, dosage forms and biological sample. This method is based on oxidative coupling reaction of 2,4-dinitrophenylhydrazine (DNPH) with PHE in existence of sodium periodate as oxidizing agent in alkaline medium to form a red colored product at ʎmax )520 nm (. A flow rate of 4.3 mL.min-1 using distilled water as a carrier, the method of FIA proved to be as a sensitive and economic analytical tool for estimation of PHE.
Within the concentration range of 5-300 μg.mL-1, a calibration curve was rectilinear, where the detection limit was 3.252 μg.mL