Copper oxide (CuO) nanoparticles were synthesized through the thermal decomposition of a copper(II) Schiff-base complex. The complex was formed by reacting cupric acetate with a Schiff base in a 2:1 metal-to-ligand ratio. The Schiff base itself was synthesized via the condensation of benzidine and 2-hydroxybenzaldehyde in the presence of glacial acetic acid. This newly synthesized symmetric Schiff base served as the ligand for the Cu(II) metal ion complex. The ligand and its complex were characterized using several spectroscopic methods, including FTIR, UV-vis, 1H-NMR, 13C-NMR, CHNS, and AAS, along with TGA, molar conductivity and magnetic susceptibility measurements. The CuO nanoparticles were produced by thermally decomposing the complex at 800 °C. These nanoparticles and other metal oxides are highly valued in various industries for their optical, magnetic, and electrical properties. The experiment highlighted the synthesis of CuO nanoparticles through the thermal breakdown of copper(II) ions, starting with copper acetate, which reacted with the ligand to form the complex. The characterization results of CuO nanoparticles reveal a highly pure crystalline structure with an average size of 70–90 nm.
An aqueous chemical reaction has been used to prepare antifungal ZnS: Mn nanostructures, from manganese chloride, zinc acetate and thioacetamide in aqueous solution. The nanoparticle size has been controlled using thioglycolic acid as a capping factor. The major feature of the ZnS:Mn nanoparticles of average diameter ~ 2.73 nm is that possible preparing the sample from sources non-toxic precursors. The manufactured ZnS:Mn nanoparticles were identified and characterized to investigate the structure, morphology, composition of components of the nanoparticles and optical properties using (XRD, SEM, EDS and UV-Vis spectroscopy) techniques respectively. The agar dilution mechanism used to evaluate of the antifungal activity using ZnS:Mn nanopart
... Show MoreIn the present work, a z-scan technique was used to study the nonlinear optical properties, represented by the nonlinear refractive index and nonlinear absorption coefficients of nanoparticles cadmium sulfide thin film. The sample was prepared by the chemical bath deposition method. Several testing were done including, x-ray, transmission and thickness of thin film. z-Scan experiment was performed at two wavelengths (1064 nm and 532 nm) and different energies. The results showed the effect of self-focusing in the material at higher intensities, which evaluated n2 to be (0.11-0.16) cm2/GW. The effect of two-photon absorption was studied, which evaluated β to be (24-106) cm/GW. In addition, the optical limiting behavior has been studied.
... Show MoreThe aim of this paper is to identify Nano-particles that have been used in diagnosis and treatment of leishmaniasis in Iraq. All experiments conducted in this field were based on the following nanoparticles: gold nanoparticles, silver nanoparticles, zinc nanoparticles, and sodium chloride nanoparticles. Most of these experiments were reviewed in terms of differences in the concentrations of nanoparticles and the method that was used in the experiments whether it was in vivo or in vitro. These particles used in most experiments succeeded in inhibiting the growth of Leishmania parasites.
Phosphorus‐based Schiff base were synthesized by treating bis{3‐[2‐(4‐amino‐1.5‐dimethyl‐2‐phenyl‐pyrazol‐3‐ylideneamino)ethyl]‐indol‐1‐ylmethyl}‐phosphinic acid with paraformaldehyde and characterized as a novel antioxidant. Its corresponding complexes [(VO)2L(SO4)2], [Ni2LCl4], [Co2LCl4], [Cu2LCl4], [Zn2LCl4], [Cd2LCl4], [Hg2LCl4], [Pd2LCl4], and [PtL
... Show MoreVarious of 2,5- disubstituted 1,3,4-oxadiazole (Schiff base, ?- lactam and azo) were synthesized from 2,5-di (4,4?-amino-1,3,4-oxadiazole which usequently synth-esized from mixture of 4- amino benzoic acid and hydrazine arch of polyphosphorus acid. The synthesized compounds were cherecterized by using some spectral data (UV, FT-IR , and 1H-NMR)
Calcium-Montmorillonite (bentonite) [Ca-MMT] has been prepared via cation exchange reaction using benzalkonium chloride [quaternary ammonium] as a surfactant to produce organoclay which is used to prepare polymer composites. Functionalization of this filler surface is very important factor for achieving good interaction between filler and polymer matrix. Basal spacing and functional groups identification of this organoclay were characterized using X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy respectively. The (XRD) results showed that the basal spacing of the treated clay (organoclay) with the benzalkonium chloride increased to 15.17213 0A, this represents an increment of about 77.9% in the
... Show More