Wireless networks and communications have witnessed tremendous development and growth in recent periods and up until now, as there is a group of diverse networks such as the well-known wireless communication networks and others that are not linked to an infrastructure such as telephone networks, sensors and wireless networks, especially in important applications that work to send and receive important data and information in relatively unsafe environments, cybersecurity technologies pose an important challenge in protecting unsafe networks in terms of their impact on reducing crime. Detecting hacking in electronic networks and penetration testing. Therefore, these environments must be monitored and protected from hacking and malicious attacks. In this manuscript, a correspondence model is designed to discuss the algorithm in the environment of wireless communication systems and distributed computing by adopting the protocol data enhancement to the network using structured construction and diversity algorithm to improve the effectiveness of the intrusion detection system. Next, a multi-label convolutional neural network model is used to detect business transactions. An CNN was trained on the WSN-DS dataset using 5-Fold in CV technique with three hidden layers. The highest Precision values 0.951 of Grayhole attack for multi-classification.
Assessment of annual wind energy potential for three selected sites in Iraq has been analyzed in the present work. The wind velocities data from August 2014 to July 2015 were collected from the website of Weather Underground Organization (WUO) at stations elevation (35m, 32m, and 17m) for Baghdad, Najaf, and Kut Al-Hai respectively. Extrapolation of stations elevation and wind velocities was used to estimate wind velocities at (60m, 90m, and 120m). The objectives are to analyze the wind speed data and assess the wind energy potential for wind energy applications. Computer code for MATLAB software has been developed to solve the mathematical model. The results are presented as a monthly and annual average for wind velocities, standard deviat
... Show MoreObjectives: to assess nurses' knowledge toward infection control measures for hepatitis a virus in hemodialysis
units and to detemine the relationship between nurses' knowledge and their demographical characteristics.
%eihs:::°mg:rA5th:e;:#tt£:eoscTodbyerw9¥,C22;5];e.d°utathem°dialysisunitsofBaghdadTeachingHospha|sstated
A non-probability `tturposive" sample of (51) nurses, who were working in hemodialysis units were selected
from Baghdad teaching hosphals. The data were collected through the use of constructed questionnaire, which
consists of two parts (I) Demographic data fom that consists of 10 items and (2) Nurses' knowledge form that
consists of 6 sections contain 79 items, by means of direct interview techniq
This study aimed to detect of contamination of milk and local soft cheese with Staphylococcus aureus and their enterotoxins with attempt to detect the enterotoxin genes in some isolates of this bacteria. A total of 120 samples, 76 of raw milk and 44 of soft cheese were collected from different markets of Baghdad city. Enterotoxins in these samples were detected by VIDAS Set 2 system and it was found that enterotoxin A is present in a rate of 44.74% in milk samples and in a rate 54.50% in cheese samples. While other enterotoxins B, C, D, E were not found in any rate in any samples.
Through the study 60 isolates obtained from milk and cheeses were identified as Staphylococcus aureus by cultural, morphological and biochemical test by u
Tested effective Alttafaria some materials used for different purposes, system a bacterial mutagenesis component of three bacterial isolates belonging to different races and materials tested included drug Briaktin
In this paper, new brain tumour detection method is discovered whereby the normal slices are disassembled from the abnormal ones. Three main phases are deployed including the extraction of the cerebral tissue, the detection of abnormal block and the mechanism of fine-tuning and finally the detection of abnormal slice according to the detected abnormal blocks. Through experimental tests, progress made by the suggested means is assessed and verified. As a result, in terms of qualitative assessment, it is found that the performance of proposed method is satisfactory and may contribute to the development of reliable MRI brain tumour diagnosis and treatments.
Researchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l
... Show MoreSpraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...
Geotechnical engineering like any other engineering field has to develop and cope with new technologies. This article intends to investigate the spatial relationships between soil’s liquid limit (LL), plasticity index (PI) and Liquidity index (LI) for particular zones of Sulaymaniyah City. The main objective is to study the ability to produce digital soil maps for the study area and determine regions of high expansive soil. Inverse Distance Weighting (IDW) interpolation tool within the GIS (Geographic Information System) program was used to produce the maps. Data from 592 boreholes for LL and PI and 245 boreholes for LI were used for this study. Layers were allocated into three depth ranges (1 to 2, 2 to 4 and 4 to 6)
... Show MoreIn recent years, the world witnessed a rapid growth in attacks on the internet which resulted in deficiencies in networks performances. The growth was in both quantity and versatility of the attacks. To cope with this, new detection techniques are required especially the ones that use Artificial Intelligence techniques such as machine learning based intrusion detection and prevention systems. Many machine learning models are used to deal with intrusion detection and each has its own pros and cons and this is where this paper falls in, performance analysis of different Machine Learning Models for Intrusion Detection Systems based on supervised machine learning algorithms. Using Python Scikit-Learn library KNN, Support Ve
... Show More