Wireless networks and communications have witnessed tremendous development and growth in recent periods and up until now, as there is a group of diverse networks such as the well-known wireless communication networks and others that are not linked to an infrastructure such as telephone networks, sensors and wireless networks, especially in important applications that work to send and receive important data and information in relatively unsafe environments, cybersecurity technologies pose an important challenge in protecting unsafe networks in terms of their impact on reducing crime. Detecting hacking in electronic networks and penetration testing. Therefore, these environments must be monitored and protected from hacking and malicious attacks. In this manuscript, a correspondence model is designed to discuss the algorithm in the environment of wireless communication systems and distributed computing by adopting the protocol data enhancement to the network using structured construction and diversity algorithm to improve the effectiveness of the intrusion detection system. Next, a multi-label convolutional neural network model is used to detect business transactions. An CNN was trained on the WSN-DS dataset using 5-Fold in CV technique with three hidden layers. The highest Precision values 0.951 of Grayhole attack for multi-classification.
People’s ability to quickly convey their thoughts, or opinions, on various services or items has improved as Web 2.0 has evolved. This is to look at the public perceptions expressed in the reviews. Aspect-based sentiment analysis (ABSA) deemed to receive a set of texts (e.g., product reviews or online reviews) and identify the opinion-target (aspect) within each review. Contemporary aspect-based sentiment analysis systems, like the aspect categorization, rely predominantly on lexicon-based, or manually labelled seeds that is being incorporated into the topic models. And using either handcrafted rules or pre-labelled clues for performing implicit aspect detection. These constraints are restricted to a particular domain or language which is
... Show MoreObjective: The study aims at assessing the food frequency intake and dietary habits for diabetic pregnant
women.
Methodology: A descriptive study is carried out for the period from November4th 2013 to August
25th 2014. A purposive "non-probability" sample of one hundred diabetic pregnant women is selected from
the Diabetic and Endocrine Center in Al-Amarha City. A questionnaire is developed as a tool of data
collection. Content validity of the study instrument is determined through panel of experts. Split-half
reliability technique is used for reliability determination of the study instrument which depicts a reliability
coefficient of (0.79) for the entire scale. A structured interview with each diabetic pregnant wom
Background: A core set of checks have been incorporated into World Health Organization (WHO) WHO surgical safety checklist. Lack of access to basic surgical care remains a major concern in low-income settings.
Objective: We use a WHO surgical safety checklist items to improve team communication and cooperation to help in reduction of morbidity and mortality of surgical procedures.
Methods: This is a prospective study involving 300 patients after applying the 19 items of the surgical safety checklist with different types of operations had been operated in the surgical theater at Al-Kindy Teaching Hospital during the period 1st of September 2016
... Show MoreThe aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.
This study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to
Various theories have been proposed since in last century to predict the first sighting of a new crescent moon. None of them uses the concept of machine and deep learning to process, interpret and simulate patterns hidden in databases. Many of these theories use interpolation and extrapolation techniques to identify sighting regions through such data. In this study, a pattern recognizer artificial neural network was trained to distinguish between visibility regions. Essential parameters of crescent moon sighting were collected from moon sight datasets and used to build an intelligent system of pattern recognition to predict the crescent sight conditions. The proposed ANN learned the datasets with an accuracy of more than 72% in comp
... Show More