Fetal growth restriction is a significant contributor to fetal morbidity and mortality. In addition, there are heightened maternal risks associated with surgical operations and their accompanying dangers. Monitoring fetal development is a crucial objective of prenatal care and effective methods for early diagnosis of Fetal growth restriction, allowing prompt management and timely intervention to improve the outcomes. Screening for Fetal growth restriction can be achieved via many modalities; it can be medical, biochemical, or radiological. Some recommended combining more than one for better outcomes. Currently, there is inconsistency about the best method of Fetal growth restriction screening. In this review, a comprehensive evaluation of the current radiological methods used for Fetal growth restriction, including serial growth scan, Doppler velocimetry, and biophysical profile is offered. Limitations, and potential enhancements area were specifically analyzing the effectiveness. Moreover, recently developed experimental radiological techniques were presented and how to integrate them into practice to enhance follow-up performance and results.
In this work magnetite/geopolymer composite (MGP) were synthesized using a chemical co-precipitation technique. The synthesized materials were characterized using several techniques such as: “X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), vibrating sample-magnetometer (VSM), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), Brunauer–Emmett–Teller (BET) and Barrentt-Joyner-Halenda (BJH)” to determine the structure and morphology of the obtained material. The analysis indicated that metal oxide predominantly appeared at the shape of the spinel structure of magnetite, and that the presence of nano-magnetite had a substantial impact on the surface area and pore st
... Show MoreThe investigation of machine learning techniques for addressing missing well-log data has garnered considerable interest recently, especially as the oil and gas sector pursues novel approaches to improve data interpretation and reservoir characterization. Conversely, for wells that have been in operation for several years, conventional measurement techniques frequently encounter challenges related to availability, including the lack of well-log data, cost considerations, and precision issues. This study's objective is to enhance reservoir characterization by automating well-log creation using machine-learning techniques. Among the methods are multi-resolution graph-based clustering and the similarity threshold method. By using cutti
... Show MoreThe Department of Art Education in the College of Fine Arts is one of the educational institutions that aims to prepare teachers specialized in teaching art education in secondary schools and other educational institutions, which forces those in charge of preparing the curricula for this section and developing it, taking into account the rapid scientific and technological development. And the subject (Music Appreciation) is one of the subjects taught for the third grades in Art Education departments, and through the exploratory study carried out by the researcher it became clear to him that the Faculties of Fine Arts agreed to define their educational objectives and outputs in the subject (Music Appreciation) in Art Education departments
... Show MoreWireless sensor networks (WSNs) represent one of the key technologies in internet of things (IoTs) networks. Since WSNs have finite energy sources, there is ongoing research work to develop new strategies for minimizing power consumption or enhancing traditional techniques. In this paper, a novel Gaussian mixture models (GMMs) algorithm is proposed for mobile wireless sensor networks (MWSNs) for energy saving. Performance evaluation of the clustering process with the GMM algorithm shows a remarkable energy saving in the network of up to 92%. In addition, a comparison with another clustering strategy that uses the K-means algorithm has been made, and the developed method has outperformed K-means with superior performance, saving ener
... Show MoreThis paper introduces a complete design and simulation of a controller for the double fed induction generator (DFIG) turbine. The work also included the solar updraft tower (SUT) design to supply Al-Mahmoudia hospital in Baghdad/Iraq. The design includes the daily average load estimation, annual solar irradiance and, temperature monitoring, and logging.
According to the data obtained from the Ministry of Science and Technology, Baghdad has low wind speed. Therefore, the (SUT) has been designed to generate electrical power depending on the difference between the external and internal air temperature. The temperature difference will generate a suitable airspeed to drive the wind turbine, connected to the proposed (DFIG) generators
... Show MoreBackground: Plasma-activated water (PAW) is considered one of the emerging strategies that has been highlighted recently in the food industry for microbial decontamination and mycotoxin detoxification, due to its unique provisional characteristics. Aim: The effectiveness of PAW for aflatoxin B1 (AFB1), ochratoxin A (OTA), and fumonisin B1 (FB1) detoxification in naturally contaminated poultry feeds with its impacts on the feed quality were inspected. Methods: PAW-30 and PAW-60 were utilized for feed treatment for six time durations (5, 10, 15, 20, 40 and 60 min) each. The alterations in the physicochemical properties of PAW after different time durations of plasma inducement and treatment with and without feed samples were monit
... Show MoreThe blade pitch angle (BPA) in wind turbine (WT) is controlled to maximize output power generation above the rated wind speed (WS). In this paper, four types of controllers are suggested and compared for BPA controller in WT: PID controller (PIDC), type-1 fuzzy logic controller (T1-FLC), type-2 fuzzy logic controller (T2-FLC), and hybrid fuzzy-PID controller (FPIDC). The Mamdani and Sugeno fuzzy inference systems (FIS) have been compared to find the best inference system used in FLC. Genetic algorithm (GA) and Particle swarm optimization algorithm (PSO) are used to find the optimal tuning of the PID parameter. The results of500-kw horizontal-axis wind turbine show that PIDC based on PSO can reduced 2.81% in summation error of power
... Show More