Pareto distribution is used in many economic, financial and social applications. This distribution is used for the study of income and wealth and the study of settlement in cities and villages and the study of the sizes of oil wells as well as in the field of communication through the speed of downloading files from the Internet according to their sizes. This distribution is used in mechanical engineering as one of the distributions of models of failure, stress and durability. Given the practical importance of this distribution on the one hand, and the scarcity of sources and statistical research that deal with it, this research touched on some statistical characteristics such as derivation of its mathematical function , probability density function, cumulative distribution function, methods of estimating parameters, and the difficulties that researchers may face in dealing with these phenomena. The parameters were estimated in a number of methods, including the Maximum Likelihood (MLE), Ordinary Least Squares (OLS), Moment method (MOM), Relative Least squares (RELS) and Ridge regression (RR). In addition an algorithm has been proposed to improve the estimation parameters for this distribution. MSE was used to determine the best of these methods. Conclusions were presented in the light of this and appropriate proposals were decided upon.
ABSTRICT:
This study is concerned with the estimation of constant and time-varying parameters in non-linear ordinary differential equations, which do not have analytical solutions. The estimation is done in a multi-stage method where constant and time-varying parameters are estimated in a straight sequential way from several stages. In the first stage, the model of the differential equations is converted to a regression model that includes the state variables with their derivatives and then the estimation of the state variables and their derivatives in a penalized splines method and compensating the estimations in the regression model. In the second stage, the pseudo- least squares method was used to es
... Show MoreExploring the B-Spline Transform for Estimating Lévy Process Parameters: Applications in Finance and Biomodeling Exploring the B-Spline Transform for Estimating Lévy Process Parameters: Applications in Finance and Biomodeling Letters in Biomathematics · Jul 7, 2025Letters in Biomathematics · Jul 7, 2025 Show publication This paper, presents the application of the B-spline transform as an effective and precise technique for estimating key parameters i.e., drift, volatility, and jump intensity for Lévy processes. Lévy processes are powerful tools for representing phenomena with continuous trends with abrupt changes. The proposed approach is validated through a simulated biological case study on animal migration in which movements are mo
... Show MoreThis paper deals with defining Burr-XII, and how to obtain its p.d.f., and CDF, since this distribution is one of failure distribution which is compound distribution from two failure models which are Gamma model and weibull model. Some equipment may have many important parts and the probability distributions representing which may be of different types, so found that Burr by its different compound formulas is the best model to be studied, and estimated its parameter to compute the mean time to failure rate. Here Burr-XII rather than other models is consider because it is used to model a wide variety of phenomena including crop prices, household income, option market price distributions, risk and travel time. It has two shape-parame
... Show MoreMultiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of
... Show MoreIn this paper, the researcher suggested using the Genetic algorithm method to estimate the parameters of the Wiener degradation process, where it is based on the Wiener process in order to estimate the reliability of high-efficiency products, due to the difficulty of estimating the reliability of them using traditional techniques that depend only on the failure times of products. Monte Carlo simulation has been applied for the purpose of proving the efficiency of the proposed method in estimating parameters; it was compared with the method of the maximum likelihood estimation. The results were that the Genetic algorithm method is the best based on the AMSE comparison criterion, then the reliab
... Show MoreWeibull distribution is considered as one of the most widely distribution applied in real life, Its similar to normal distribution in the way of applications, it's also considered as one of the distributions that can applied in many fields such as industrial engineering to represent replaced and manufacturing time ,weather forecasting, and other scientific uses in reliability studies and survival function in medical and communication engineering fields.
In this paper, The scale parameter has been estimated for weibull distribution using Bayesian method based on Jeffery prior information as a first method , then enhanced by improving Jeffery prior information and then used as a se
... Show MoreMany of the dynamic processes in different sciences are described by models of differential equations. These models explain the change in the behavior of the studied process over time by linking the behavior of the process under study with its derivatives. These models often contain constant and time-varying parameters that vary according to the nature of the process under study in this We will estimate the constant and time-varying parameters in a sequential method in several stages. In the first stage, the state variables and their derivatives are estimated in the method of penalized splines(p- splines) . In the second stage we use pseudo lest square to estimate constant parameters, For the third stage, the rem
... Show More