One of the most popular and legally recognized behavioral biometrics is the individual's signature, which is used for verification and identification in many different industries, including business, law, and finance. The purpose of the signature verification method is to distinguish genuine from forged signatures, a task complicated by cultural and personal variances. Analysis, comparison, and evaluation of handwriting features are performed in forensic handwriting analysis to establish whether or not the writing was produced by a known writer. In contrast to other languages, Arabic makes use of diacritics, ligatures, and overlaps that are unique to it. Due to the absence of dynamic information in the writing of Arabic signatures, it will be more difficult to attain greater verification accuracy. On the other hand, the characteristics of Arabic signatures are not very clear and are subject to a great deal of variation (features’ uncertainty). To address this issue, the suggested work offers a novel method of verifying offline Arabic signatures that employs two layers of verification, as opposed to the one level employed by prior attempts or the many classifiers based on statistical learning theory. A static set of signature features is used for layer one verification. The output of a neutrosophic logic module is used for layer two verification, with the accuracy depending on the signature characteristics used in the training dataset and on three membership functions that are unique to each signer based on the degree of truthiness, indeterminacy, and falsity of the signature features. The three memberships of the neutrosophic set are more expressive for decision-making than those of the fuzzy sets. The purpose of the developed model is to account for several kinds of uncertainty in describing Arabic signatures, including ambiguity, inconsistency, redundancy, and incompleteness. The experimental results show that the verification system works as intended and can successfully reduce the FAR and FRR.
The Ge0.4Te0.6 alloy has been prepared. Thin films of Ge0.4Te0.6 has been prepared via a thermal evaporation method with 4000A thickness, and rate of deposition (4.2) A/sec at pressure 2x10-6 Torr. The A.C electrical conductivity of a-Ge0.4Te0.6 thin films has been studied as a function of frequency for annealing temperature within the range (423-623) K, the deduced exponent s values, was found to decrease with increasing of annealing temperature through the frequency of the range (102-106) Hz. It was found that, the correlated barrier hopping (CBH) is the dominant conduction mechanism. Values of dielectric constant ε1 and dielectric loss ε2 were found to decrease with frequency and increase with temperature. The activation energies have
... Show More
Abstract
Friction stir welding is a relatively new joining process, which involves the joining of metals without fusion or filler materials. In this study, the effect of welding parameters on the mechanical properties of aluminum alloys AA2024-T351 joints produced by FSW was investigated.
Different ranges of welding parameters, as input factors, such as welding speed (6 - 34 mm/min) and rotational speed (725 - 1235 rpm) were used to obtain their influences on the main responses, in terms of elongation, tensile strength, and maximum bending force. Experimental measurements of main responses were taken and analyzed using DESIGN EXPERT 8 experimental design software which was used to develop t
... Show MoreAbstract: Data mining is become very important at the present time, especially with the increase in the area of information it's became huge, so it was necessary to use data mining to contain them and using them, one of the data mining techniques are association rules here using the Pattern Growth method kind enhancer for the apriori. The pattern growth method depends on fp-tree structure, this paper presents modify of fp-tree algorithm called HFMFFP-Growth by divided dataset and for each part take most frequent item in fp-tree so final nodes for conditional tree less than the original fp-tree. And less memory space and time.
Roof in the Iraqi houses normally flattening by a concrete panel. This concrete panel has poor thermal properties. The usage of materials with low thermal conductivity and high specific heat gives a good improvements to the thermal properties of the concrete panel, thus, the indoor room temperature improves. A Mathcad program based on a mathematical model employing complex Fourier series built for a single room building. The model input data are the ambient temperature, solar radiation, and sol-air temperature, which have been treated as a periodic function of time. While, the room construction is constant due to their materials made of it, except the roof properties are taken as a variable generated practically from the
... Show MoreThis paper reports a fiber Bragg grating (FBG) as a biosensor. The FBGs were etched using a chemical agent,namely,hydrofluoric acid (HF). This implies the removal of some part of the cladding layer. Consequently, the evanescent field propagating out of the core will be closer to the environment and become more sensitive to the change in the surrounding. The proposed FBG sensor was utilized to detect toxic heavy metal ions aqueous medium namely, copper ions (Cu2+). Two FBG sensors were etched with 20 and 40 μm diameters and fabricated. The sensors were studied towards Cu2+ with different concentrations using wavelength shift as a result of the interaction between the evanescent field and copper ions. The FBG sensors showed
... Show MoreFabrication of a photodetector consists of the conjugated polymer "MEH-PPV"- poly (2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenlenevinylene) and MEH-PPV:MWCNT nanocomposite thin film. The volume ratio investigated was 0.75:0.25. MEH-PPV was dissolved in chloroform solvent and doped with MWCNTs. The spin coating method was used to achieve a facile and low cost photodetector. The absorption spectrum decreases by adding the CNTs. The PL spectrum detected recombination curve results by doping the polymer with CNTs, and AFM measurement showed an increase of roughness average from (0.168 to 2.43nm) of "MEH-PPV" and "MEH-PPV:CNTs", respectively. The doping ratio 0.25, which has a higher photoresponsivity, was evaluated at 1.70 A/W and 2.14 A/W of th
... Show More