Extracorporeal shock wave lithotripsy (ESWL) is considered a standard treatment for nephrolith or kidney stones measuring less than 20 mm. Anatomical, machine-related, and stone factors play pivotal roles in treatment outcomes, the latter being the leading role. This paper examined the relationship between stone density on native CT scans and ESWL treatment to remove renal stones concerning several treatments. One hundred and twenty patients (64 males and 56 females) were enrolled and completed the study from April 2019 to September 2020. Inclusion criteria were a single renal pelvis stone of 5–20 mm to be treated for the first time in adult patients with no urinary or musculoskeletal anatomical abnormalities. We assessed patients' renal function and obtained stone characteristics using a native CT scan. Patients were then scheduled for ESWL by the same machine and operator under fluoroscopy, with two-week intervals between treatment sessions when more than one treatment session was required. Before each new session, a new KUB-US was performed to reevaluate the stone. One hundred and twenty patient records were analyzed, 64 (53.3%) males and 56 (46.7%) females, with a mean age of 38.6 years and a mean stone size of 13.15 mm. Treatment with ESWL cleared stones in 76 (63.3%) patients, while 44 (36.7%) failed the treatment. The mean stone density in patients whose stones were cleared was significantly lower (661
Background The escalating global concern over increased body weight in adolescents, coupled with the rising rates of adolescent pregnancy worldwide, presents a significant challenge to healthcare systems. We plan to identify the maternal and neonatal consequences associated with pre-pregnancy overweight in adolescent women. Methods Throughout five years, all singleton adolescent pregnant women with pre-pregnancy self-reported body mass index (BMI) of 18.5– ≤ 29.9 were involved during the first-trimester visit. Two groups were generated: overweight and appropriate-weight (BMI 25–29.9 and 18.5–24.9, respectively). Obstetric and neonatal outcomes were observed prospectively and statistically adjusted for the confounding factors.
... Show MorePregnancy at an early age of life is a major challenge. The consequences of this problem have an impact on the quality of life of the young mother and her family, and determines an important risk for her offspring. The son of a teenage mother has, in general, greater risks than that of a mother of more than 20 years. The aim of this study is to determine the prevalence and outcome of teenage pregnancy. A descriptive data base study was conducted at Al-Elwia Maternity Teaching hospital in the period from January 1, 2019 to the end of June 2019 within the age between 12 and 19 years old. The mean age of the mother was 17.4 ±1.5 years. The mean age of the father was 23.9 ± 5.7 years with (69.5%) with Vaginal delivery and most of the
... Show MoreAIM: To analyse our experiences in the management of traumatic retroperitoneal hematoma (RPH), highlighting the various challenges faced and to report on the outcome of these patients. METHODS: From May 2014 to May 2017, all patients with traumatic RPH who underwent surgical treatment were retrospectively analysed. The kind of injury, intraoperative findings, sites of hematoma, postoperative morbidity and the overall outcomes were recorded. RESULTS: Ninety-six patients; 53 with blunt trauma and 43 with penetrating injury, were included in this study. The centre-medial hematoma was observed in 24 (25%) patients, lateral hematoma in 46 (47.9%) patients, pelvic hematoma in 19 (19.8%) patients, and multiple zone hematomas in
... Show MoreThis study was undertaken to provide more insight on the optimum injection temperature used for the production of PE crates, thereby saving time and money, and improving part quality. The work included processing trails of HDPE crates in an injection
molding machine at five temperatures ranged from 220 to 300°C. Both Rheological and mechanical characterization was conducted in order to understand the effect of injection temperature on the properties of crates. Oven aging was also applied for (4 weeks) to evaluate the long-term thermal stability. The results revealed that producing the crates at a temperature range of (260-280 °C) gives the best rheological and mechanical result. The lowest drop in thermal stability has been observed
: The Aluminium (Al) material emerged as a plasmonic material in the wavelength ranges from the ultraviolet to the visible bands in different on-chip plasmonic applications. In this paper, we demonstrate the effect of using Al on the electromagnetic (EM) field distribution of a compact hybrid plasmonic waveguide (HPW) acting as a polarization rotator. We compare the performance of Al with other familiar metals that are widely used as plasmonic materials, which are Silver (Ag) and Gold (Au). Furthermore, we study the effect of reducing the geometrical dimensions of the used materials on the EM field distributions inside the HPW and, consequently, on the efficiency of the polarization rotation. We perform the study based o
... Show MoreThis paper aims to study the fractional differential systems arising in warm plasma, which exhibits traveling wave-type solutions. Time-fractional Korteweg-De Vries (KdV) and time-fractional Kawahara equations are used to analyze cold collision-free plasma, which exhibits magnet-acoustic waves and shock wave formation respectively. The decomposition method is used to solve the proposed equations. Also, the convergence and uniqueness of the obtained solution are discussed. To illuminate the effectiveness of the presented method, the solutions of these equations are obtained and compared with the exact solution. Furthermore, solutions are obtained for different values of time-fractional order and represented graphically.
The paper deals with the traveling wave cylindrical heating systems. The analysis presented is analytical and a multi-layer model using cylindrical geometry is used to obtain the theoretical results. To validate the theoretical results, a practical model is constructed, tested and the results are compared with the theoretical ones. Comparison showed that the adopted analytical method is efficient in describing the performance of such induction heating systems.
Density Functional Theory at the generalized-gradient approximation level coupled with large unit cell method is used to simulate the electronic structure of (II-VI) zinc-blende cadmium sulfide nanocrystals that have dimensions 2-2.5 nm. The calculated properties include lattice constant, conduction and valence bands width, energy of the highest occupied orbital, energy of the lowest unoccupied orbital, energy gap, density of states etc. Results show that lattice constant and energy gap converge to definite values. However, highest occupied orbital, lowest unoccupied orbital fluctuates indefinitely depending on the shape of the nanocrystal.