This study concerns the removal of a trihydrate antibiotic (Amoxicillin) from synthetically contaminated water by adsorption on modified bentonite. The bentonite was modified using hexadecyl trimethyl ammonium bromide (HTAB), which turned it from a hydrophilic to a hydrophobic material. The effects of different parameters were studied in batch experiments. These parameters were contact time, solution pH, agitation speed, initial concentration (C0) of the contaminant, and adsorbent dosage. Maximum removal of amoxicillin (93 %) was achieved at contact time = 240 min, pH = 10, agitation speed = 200 rpm, initial concentration = 30 ppm, and adsorbent dosage = 3 g bentonite per 1L of pollutant solution. The characterization of the adsorbent, modified bentonite, was accomplished using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller. The isotherm models were also investigated, and it was found that the Freundlich isotherm model fitted well with the experimental data (R2 = 94.77), which suggests heterogeneity in the multilayer adsorption of amoxicillin onto modified bentonite. The kinetics of the adsorption process were studied. The experimental data were found to obey the pseudo-first-order kinetic model (R2 = 95.1). Thermodynamic studies indicated that the adsorption process was physisorption and endothermic. Finally, the modified bentonite proved to be a good adsorbent for the removal of amoxicillin from contaminated solutions.
In this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2) activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon) was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camaldulensis leaves) using water distillation method by Clevenger apparatus. The effects of main operating parameters were studied: time to reach equilibrium, temperature (70 to100°C), solvent to solid ratio (4:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm), and particle size (0.5 to 2.5 cm) of the fresh leaves, to find the best processing conditions for achieving maximum oil yield. The results showed that the agitation speed of 900 rpm, temperature 100° C, with solvent to solid ratio 5:1 (v/w) of particle size 0.5 cm for 160 minute give the highest percentage of oil (46.25 wt.%). The extracted oil was examined by HPLC.
In this research, nanocomposites of poly(methyl methacrylate) (PMMA) and a mixture of nano silica (SiO2) and nano zirconia (ZrO2) were prepared in different weight percentages of the nano fillers to improve some of the properties of PMMA resin to be used as a denture base material. The nano filles were surface modified with a coupling agent and added to the PMMA in different amounts. Impact strength, transverse strength, hardness and roughness were tested for both control and experimental groups. The results indicate that PMMA/silica/zirconia nanocomposites, prepared with 5% by weight of both types of fillers, had a slight increase in impact s
Background: Impression materials, impression trays, and poured stone cast have been said to be the main source of cross infection between patients and dentists. However, it was observed that disinfection of the impression is not performed systematically in routine dental practice. Disinfection of alginates either by immersion or spray technique was found to cause dimensional inaccuracies, although with proper disinfection of alginates there were small dimensional changes. A variety of fluoride releasing products designed for topical use is currently available. Following their use, varied amount of fluoride is systemically absorbed depending on the fluoride concentration and the manner of its use. The objective of this study was to evaluate
... Show MoreDue to the rapid advancement of technology and the technology of things, modern industries start to need a highprecision equipment and surface finishing, so many finishing processes began to develop. One of the modern processes is Magnetic Abrasive Finishing (MAF), which is a high-precision process for internal and external finishing under the influence of a magnetic field of abrasive particles. Boron Carbide (B4C) ceramics was tested by mixing it with iron (Fe) and produced abrasive particles to reduce the intensity of scraping on the surface, reduce the economic cost and achieve a high finishing addition to remove the edges at the same time. The material selected for the samples was mild steel (ASTM E415) under (Quantity of Abrasives, Mac
... Show MoreThis studies deals with investigated the potential of a Iraqi bentonite clay for the adsorption of bromo phenol red dye from contaminated water. Impulse adsorption experiments were performed. The contact time influence of initial dye concentration, temperature, pH, ionic strength, partical size adsorbent and adsorbent dosage on bromo phenol red adsorption are investigated in a series of batch adsorption experiments. Adsorption equilibrium data were analyzed and described by the Freundlich, Langmuir and temkin isotherms equations. Thermodynamic parameters inclusive the Gibbs free energy (∆G• ), enthalpy (∆H• ), and entropy (∆S• ), were also calculated. These parameters specified that adsorption of bromo phenol red onto bentonite
... Show MoreIn this study, the preparation and characterization of hyacinth plant /chitosan composite, as a heavy metal removal, were done. Water hyacinth plant (Eichhorniacrasspes) was collected from Tigris river in Baghdad. The root and shoot parts of plant were ground to powder. Composite materials were prepared at different ratios of plant part (from 2.9% to 30.3%, wt /wt) which corresponds to (30-500mg) of hyacinth plant (root and shoot) and chitosan. The results showed that all examined ratios of plant parts have an excellent absorption to copper (Cu (II)). Moreover, it was observed that 2.9% corresponds (30mg) of plant root revealed highest removal (82.7%) of Pb (II), while 20.23% of shoot removed 61% of Cd (II) within 24 hr
... Show MorePolyacrylonitrile nanofiber (PANFS), a well-known polymers, has been extensively employed in the manufacturing of carbon nanofibers (CNFS), which have recently gained substantial attention due to their excellent features, such as spinnability, environmental friendliness, and commercial feasibility. Because of their high carbon yield and versatility in tailoring the final CNFS structure, In addition to the simple formation of ladder structures through nitrile polymerization to yield stable products, CNFS and PAN have been the focus of extensive research as potential production precursors. For instance, the development of biomedical and high-performance composites has now become achievable. PAN homopolymer or PAN-based precursor copolymer can
... Show MoreIn this paper, split-plate airlift electrochemical reactor as an apparatus with new configuration for wastewater treatment was provided. Two aluminum plates were fixed inside the reactor and present two functions; first it works as split plates for internal loop generation of the airlift system (the zone between the two plates acts as riser while the other two zones act as downcomer) and second it works as two electrodes for electrocoagulation process. Simulated wastewater contaminated with zinc ions was used to test the performance of this apparatus for zinc removal by studying the effect of different experimental variables such as initial concentration of zinc (50-800 ppm), electrical current density (2.67-21.4 mA/cm2), init
... Show More