This study concerns the removal of a trihydrate antibiotic (Amoxicillin) from synthetically contaminated water by adsorption on modified bentonite. The bentonite was modified using hexadecyl trimethyl ammonium bromide (HTAB), which turned it from a hydrophilic to a hydrophobic material. The effects of different parameters were studied in batch experiments. These parameters were contact time, solution pH, agitation speed, initial concentration (C0) of the contaminant, and adsorbent dosage. Maximum removal of amoxicillin (93 %) was achieved at contact time = 240 min, pH = 10, agitation speed = 200 rpm, initial concentration = 30 ppm, and adsorbent dosage = 3 g bentonite per 1L of pollutant solution. The characterization of the adsorbent, modified bentonite, was accomplished using Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller. The isotherm models were also investigated, and it was found that the Freundlich isotherm model fitted well with the experimental data (R2 = 94.77), which suggests heterogeneity in the multilayer adsorption of amoxicillin onto modified bentonite. The kinetics of the adsorption process were studied. The experimental data were found to obey the pseudo-first-order kinetic model (R2 = 95.1). Thermodynamic studies indicated that the adsorption process was physisorption and endothermic. Finally, the modified bentonite proved to be a good adsorbent for the removal of amoxicillin from contaminated solutions.
This work presents a simple method for determination of the neutron reflection coefficient (n) as a function of different neutron reflector materials.A laboratory neutron source (Am-Be) with activity of 16 ci is employed with a (BF3) neutron detector. Am-BeThree types of reflector materials are used as samples, the thickness of each sample is (5cm).It is found that( ?7) is: -For polyethlyene = 0.818
In this paper, the ability of using corn leaves as low-cost natural biowaste adsorbent material for the removal of Indigo Carmen (IC) dye was studied. Batch mode system was used to study several parameters such as, contact time (4 days), concentration of dye (10-50) ppm, adsorbent dosage (0.05-0.25) gram, pH (2-12) and temperature (30-60) oC. The corn leaf was characterized by Fourier-transform infrared spectroscopy device before and after the adsorption process of the IC dye and scanning electron microscope device was used to find the morphology of the adsorbent material. The experimental data was imputing with several isotherms where it fits with Freundlich (R2 = 0.9
... Show MoreThis paper presents the ability to use cheap adsorbent (corn leaf) for the removal of Malachite Green (MG) dye from its aqueous solution. A batch mode was used to study several factors, dye concentration (50-150) ppm, adsorbent dosage (0.5-2.5) g/L, contact time (1-4) day, pH (2-10), and temperature (30-60) The results indicated that the removal efficiency increases with the increase of adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature. An SEM device characterized the adsorbent corn leaves. The adsorption's resulting data were in agreement with Freundlich isotherm according to the regression analysis, and the kinetics data followed pseudo-first-or
... Show MoreAleppo bentonite was investigated to remove ciprofloxacin hydrochloride from aqueous solution. Batch adsorption experiments were conducted to study the several factors affecting the removal process, including contact time, pH of solution, bentonite dosage, ion strength, and temperature. The optimum contact time, pH of solution and bentonite dosage were determined to be 60 minutes, 6 and 0.15 g/50 ml, respectively. The bentonite efficiency in removing CIP decreased from 89.9% to 53.21% with increasing Ionic strength from 0 to 500mM, and it increased from 89% to 96.9% when the temperature increased from 298 to 318 K. Kinetic studies showed that the pseudo second-order model was the best in describing the adsorption sys
... Show More
Water pollution is one of the global challenges that the society must address in the 21st century aiming to improve the water quality, reduce human pollutants and ecosystem health impacts. In phytotoxicity test, the plant of Iresine herbstii was exposed to remove nickel from simulated wastewater using two different ratios (mass of plant to the mass of nickel) (,Rp/Ni) for 21 days with sub-surface batch system. During the exposure period, the removal of Ni concentrations (2, 5 and 10 mg/L) for two mass ratio (2,800 and 34,000) were (83.6%, 77.2%, 78.0%) and (86.8%, 97% and 95.6%), respectively. final result of the rate was found that the highest removal occurred, 97%, at a mass ratio of 34,000 and
... Show MoreWe aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles. In addition, SEM-EDS mapping confirmed that the coating process was appropriate. Sorption tests for the interaction of this sorbent with an aqueous solution contaminated with Congo red dye revealed the efficacy of this material where the maximum adsorption capacity reached approximately 9127.08 mg/g. The pseudo-first-order and pseudo-second-order kinetic models helped to describe the sorption measure