The advancements in horizontal drilling combined with hydraulic fracturing have been historically proven as the most viable technologies in the exploitation of unconventional resources (e.g., shale and tight gas reservoirs). However, the number of fractures, well timing, and arrangement pattern can have a significant impact on the project economy. Therefore, such design and operating parameters need to be efficiently optimized for obtaining the best production performance from unconventional gas reservoirs. In this study, the process of selecting the optimal number of fractures was conducted on a section of a tight gas reservoir model (based on data from the Whicher Range (WR) tight gas field in Western Australia). Then, the optimal number of wells per that section was investigated using the net present value (NPV) economic indicator assuming that the production process in all wells starts at the same time (base case). After that, three drilling schedules and patterns namely infill, linear, and hybrid were studied to examine the effect of two timing scenarios known as a fixed point in time and percentage of cumulative production (including the 37.5% EUR (estimated ultimate recovery) and the 62.5% EUR). It was shown that base case and infill drilling have the highest NPV values followed by hybrid and linear patterns in all the timing scenarios. However, the base case and infill drilling scheduling were more sensitive to the development time than hybrid and linear patterns. Additionally, the optimal number of wells per section was found to be a clear function of drilling pattern and lease time. The optimal number of wells (assuming 20 years lease period) was higher in the base case and infill pattern compared to the hybrid and linear pattern. The current study aims to help operators understand how well scheduling and pattern can change the optimal number of wells and thus aid them to reach educated decisions regarding the optimal development plan for the section under the lease. This study can also help operators to develop their management plan by selecting the best drilling pattern and timing to ensure the best return on investment.
IMPLICATION OF GEOMECHANICAL EVALUATION ON TIGHT RESERVOIR DEVELOPMENT / SADI RESERVOIR HALFAYA OIL FIELD
In project management process, the objective is to define and develop a model for planning, scheduling, controlling, and monitoring different activities of a particular project. Time scheduling plays an important role in successful implementation of various activities and general outcome of project. In practice, various factors cause projects to suffer from time delay in accomplishing the activities. One important reason is imprecise knowledge about time duration of activities. This study addresses the problem of project scheduling in uncertain resource environments, which are defined by uncertain activity durations. The study presents a solution of the levelling and allocation problems for projects that have some uncertain ac
... Show MoreThe study examines the root causes of delays that the project manager is unable to resolve or how the decision-maker can identify the best opportunities to get over these obstacles by considering the project constraints defined as the project triangle (cost, time, and quality) in post-disaster reconstruction projects to review the real challenges to overcome these obstacles. The methodology relied on the exploratory description and qualitative data examined. 43 valid questionnaires were distributed to qualified experienced engineers. A list of 49 factors causes was collected from previous international and local studies. A Relative Important Index (RII) is adapted to determine the level of importance of each sub-criterion in the fou
... Show MoreBuilding numerical reservoir simulation model with a view to model actual case requires enormous amount of data and information. Such modeling and simulation processes normally require lengthy time and different sets of field data and experimental tests that are usually very expensive. In addition, the availability, quality and accessibility of all necessary data are very limited, especially for the green field. The degree of complexities of such modelling increases significantly especially in the case of heterogeneous nature typically inherited in unconventional reservoirs. In this perspective, this study focuses on exploring the possibility of simplifying the numerical simulation pr
Tight reservoirs have attracted the interest of the oil industry in recent years according to its significant impact on the global oil product. Several challenges are present when producing from these reservoirs due to its low to extra low permeability and very narrow pore throat radius. Development strategy selection for these reservoirs such as horizontal well placement, hydraulic fracture design, well completion, and smart production program, wellbore stability all need accurate characterizations of geomechanical parameters for these reservoirs. Geomechanical properties, including uniaxial compressive strength (UCS), static Young’s modulus (Es), and Poisson’s ratio (υs), were measured experimentally using both static and dynamic met
... Show MoreThis study discusses risk management strategies caused by pandemic-related (Covid-19) suspensions in thirty-six engineering projects of different types and sizes selected from countries in the middle east and especially Iraq. The primary data collection method was a survey and questionnaire completed by selected project crew and laborers. Data were processed using Microsoft Excel to construct models to help decision-makers find solutions to the scheduling problems that may be expected to occur during a pandemic. A theoretical and practical concept for project risk management that addresses a range of global and local issues that affect schedule and cost is presented and results indicate that the most significant delays are due to a
... Show MoreThis study discusses risk management strategies caused by pandemic-related (Covid-19) suspensions in thirty-six engineering projects of different types and sizes selected from countries in the middle east and especially Iraq. The primary data collection method was a survey and questionnaire completed by selected project crew and laborers. Data were processed using Microsoft Excel to construct models to help decision-makers find solutions to the scheduling problems that may be expected to occur during a pandemic. A theoretical and practical concept for project risk management that addresses a range of global and local issues that affect schedule and cost is presented and results indicate that the most significant delays are due to a
... Show More