The advancements in horizontal drilling combined with hydraulic fracturing have been historically proven as the most viable technologies in the exploitation of unconventional resources (e.g., shale and tight gas reservoirs). However, the number of fractures, well timing, and arrangement pattern can have a significant impact on the project economy. Therefore, such design and operating parameters need to be efficiently optimized for obtaining the best production performance from unconventional gas reservoirs. In this study, the process of selecting the optimal number of fractures was conducted on a section of a tight gas reservoir model (based on data from the Whicher Range (WR) tight gas field in Western Australia). Then, the optimal number of wells per that section was investigated using the net present value (NPV) economic indicator assuming that the production process in all wells starts at the same time (base case). After that, three drilling schedules and patterns namely infill, linear, and hybrid were studied to examine the effect of two timing scenarios known as a fixed point in time and percentage of cumulative production (including the 37.5% EUR (estimated ultimate recovery) and the 62.5% EUR). It was shown that base case and infill drilling have the highest NPV values followed by hybrid and linear patterns in all the timing scenarios. However, the base case and infill drilling scheduling were more sensitive to the development time than hybrid and linear patterns. Additionally, the optimal number of wells per section was found to be a clear function of drilling pattern and lease time. The optimal number of wells (assuming 20 years lease period) was higher in the base case and infill pattern compared to the hybrid and linear pattern. The current study aims to help operators understand how well scheduling and pattern can change the optimal number of wells and thus aid them to reach educated decisions regarding the optimal development plan for the section under the lease. This study can also help operators to develop their management plan by selecting the best drilling pattern and timing to ensure the best return on investment.
The objective of the current research is to find an optimum design of hybrid laminated moderate thick composite plates with static constraint. The stacking sequence and ply angle is required for optimization to achieve minimum deflection for hybrid laminated composite plates consist of glass and carbon long fibers reinforcements that impeded in epoxy matrix with known plates dimension and loading. The analysis of plate is by adopting the first-order shear deformation theory and using Navier's solution with Genetic Algorithm to approach the current objective. A program written with MATLAB to find best stacking sequence and ply angles that give minimum deflection, and the results comparing with ANSYS.
Quantum channels enable the achievement of communication tasks inaccessible to their
classical counterparts. The most famous example is the distribution of secret keys. Unfortunately, the rate
of generation of the secret key by direct transmission is fundamentally limited by the distance. This limit
can be overcome by the implementation of a quantum repeater. In order to boost the performance of the
repeater, a quantum repeater based on cut-off with two different types of quantum memories is suggestd,
which reduces the effect of decoherence during the storage of a quantum state.
This study was design to investigate the dimensional stability of heat-activated acrylic resin with different methods of flask cooling (15 minutes rapid cooling, one hour bench cooling, four hours delayed deflasking, and 24 hours delayed deflasking) at different time intervals (immediately, two days, seven days, 30 days) after deflasking. Heat-activated acrylic resin was used to prepare acrylic samples. Then, measurement of the distances where achieved between the centers of selected marks in the acrylic samples. They were measured at different time intervals for different methods of flask cooling. The results showed that the group samples of the four hours and 24 hours of delayed deflasking was insignificantly different from the control an
... Show MoreThis paper is an attempt to investigate the syntactic and semantic features of the English phrasal verbs. In this paper, phrasal verbs were classified into subgroups according to their syntactic and semantic characteristics. After giving a survey of literature written on the meaning and definition of phrasal verbs, two sections have been devoted to tackle the most important issues in this category of English verbs. Section one sheds light on the basic definitions of the term ‘phrasal verb’ which are, according to the researcher’s point of view, sufficient to cover the area of the study. In addition, it studies the number and the importance of phrasal verbs in English. Section two deals with the syntactic and semantic features of Engli
... Show MoreObjectives: The study aims at identifying the nurses’ knowledge about peritoneal dialysis complications, to
construct an education program for nurses in peritoneal dialysis units, to determine the effectiveness of the
education program upon the nurses' knowledge about complications of peritoneal dialysis, and to identify the
relationship between the nurses’ knowledge and their demographic characteristics of level of education and
years of experience.
Methodology: A quasi-experimentai study was carried out at the peritoneal dialysis units of Baghdad teaching
hospitals, from April 2004 to April 2006.
٨ purposive sample of (50) nurse was selected from Baghdad teaching hospitals. These nurses working at the
perit
The simulation of passively Q-switching is four non – linear first order differential equations. The optimization of passively Q-switching simulation was carried out using the constrained Rosenbrock technique. The maximization option in this technique was utilized to the fourth equation as an objective function; the parameters, γa, γc and β as were dealt with as decision variables. A FORTRAN program was written to determine the optimum values of the decision variables through the simulation of the four coupled equations, for ruby laser Q–switched by Dy +2: CaF2.For different Dy +2:CaF2 molecules number, the values of decision variables was predicted using our written program. The relaxation time of Dy +2: CaF2, used with ruby was
... Show MoreThe high carbon dioxide emission levels due to the increased consumption of fossil fuels has led to various environmental problems. Efficient strategies for the capture and storage of greenhouse gases, such as carbon dioxide are crucial in reducing their concentrations in the environment. Considering this, herein, three novel heteroatom-doped porous-organic polymers (POPs) containing phosphate units were synthesized in high yields from the coupling reactions of phosphate esters and 1,4-diaminobenzene (three mole equivalents) in boiling ethanol using a simple, efficient, and general procedure. The structures and physicochemical properties of the synthesized POPs were established using various techniques. Field emission scanning elect
... Show MoreThis study investigated the bioethanol production from green algae Chlorella vulgaris depending on its carbohydrate-enriched biomass. Four different phosphorous concentrations were employed to stimulate bioethanol production from Chlorella vulgaris. The impact of various phosphorous values on Chlorella vulgaris growth rate as well as primary product (carbohydrate) were evaluated. High performance liquid chromatography was utilized in this work. The stationary phase was identified as day 14, 12, 10 and 6 in treatments 6, 4, 2 and g/L, respectively. The findings suggest that the treatment without phosphorous addition had the highest record of carbohydrate content (22.64% dry weight) as well as the highest bioethanol yield (20.66% dry weight).
... Show MoreShear wave velocity is an important feature in the seismic exploration that could be utilized in reservoir development strategy and characterization. Its vital applications in petrophysics, seismic, and geomechanics to predict rock elastic and inelastic properties are essential elements of good stability and fracturing orientation, identification of matrix mineral and gas-bearing formations. However, the shear wave velocity that is usually obtained from core analysis which is an expensive and time-consuming process and dipole sonic imager tool is not commonly available in all wells. In this study, a statistical method is presented to predict shear wave velocity from wireline log data. The model concentrated to predict shear wave velocity fr
... Show More