Preferred Language
Articles
/
B-YfbZwBmraWrQ4dRUqB
Efficient design of neural network based on modified LM training algorithm for solving nonlinear 4th order 3D-PDEs 
...Show More Authors

Authors in this work design efficient neural networks, which are based on the modified Levenberg - Marquardt (LM) training algorithms to solve non-linear fourth - order three -dimensional partial differential equations in the two kinds in the periodic and in the non-periodic - Periodic. Software reliability growth models are essential tools for monitoring and evaluating the evolution of software reliability. Software defect detection events that occur during testing and operation are often treated as counting processes in many current models. However, when working with large software systems, the error detection process should be viewed as a random process with a continuous state space, since the number of faults found during testing is vast and the number of faults corrected by bug fixing changes only insignificantly. The suggested design addressing minimization problems employs a feed-forward approach to solve problems like these equations by converting the original problem into an optimization. Efficient design is achieved through a calculated parameter for learning with high precision. To clarify applicability, reliability, and accuracy for this design, some examples are provided. Additionally, to demonstrate the efficiency of the proposed design, comparisons were conducted with other designs.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sat Sep 30 2017
Journal Name
Al-khwarizmi Engineering Journal
A Cognitive Hybrid Tuning Control Algorithm Design for Nonlinear Path-Tracking Controller for Wheeled Mobile Robot
...Show More Authors

Abstract

This research presents a on-line cognitive tuning control algorithm for the nonlinear controller of path-tracking for dynamic wheeled mobile robot to stabilize and follow a continuous reference path with minimum tracking pose error. The goal of the proposed structure of a hybrid (Bees-PSO) algorithm is to find and tune the values of the control gains of the nonlinear (neural and back-stepping method) controllers as a simple on-line with fast tuning techniques in order to obtain the best torques actions of the wheels for the cart mobile robot from the proposed two controllers. Simulation results (Matlab Package 2012a) show that the nonlinear neural controller with hybrid Bees-PSO cognitive algorithm is m

... Show More
View Publication Preview PDF
Publication Date
Mon Jan 01 2024
Journal Name
Communications In Computer And Information Science
Automatic Identification of Ear Patterns Based on Convolutional Neural Network
...Show More Authors

Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Jan 01 2014
Journal Name
International Journal Of Computer Applications
Enhancing the Delta Training Rule for a Single Layer Feedforward Heteroassociative Memory Neural Network
...Show More Authors

In this paper, an algorithm is suggested to train a single layer feedforward neural network to function as a heteroassociative memory. This algorithm enhances the ability of the memory to recall the stored patterns when partially described noisy inputs patterns are presented. The algorithm relies on adapting the standard delta rule by introducing new terms, first order term and second order term to it. Results show that the heteroassociative neural network trained with this algorithm perfectly recalls the desired stored pattern when 1.6% and 3.2% special partially described noisy inputs patterns are presented.

Publication Date
Sat Aug 25 2012
Journal Name
Wireless Personal Communications
Multi-Objective Evolutionary Algorithm Based on Decomposition for Energy Efficient Coverage in Wireless Sensor Networks
...Show More Authors

Scopus (59)
Crossref (45)
Scopus Clarivate Crossref
Publication Date
Mon Sep 30 2013
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Optimal Design of Cylinderical Ectrode Using Neural Network Modeling for Electrochemical Finishing
...Show More Authors

The finishing operation of the electrochemical finishing technology (ECF) for tube of steel was investigated In this study. Experimental procedures included qualitative
and quantitative analyses for surface roughness and material removal. Qualitative analyses utilized finishing optimization of a specific specimen in various design and operating conditions; value of gap from 0.2 to 10mm, flow rate of electrolytes from 5 to 15liter/min, finishing time from 1 to 4min and the applied voltage from 6 to 12v, to find out the value of surface roughness and material removal at each electrochemical state. From the measured material removal for each process state was used to verify the relationship with finishing time of work piece. Electrochemi

... Show More
View Publication Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series
Modified PRESENT Encryption algorithm based on new 5D Chaotic system
...Show More Authors

Cryptography is a major concern in communication systems. IoE technology is a new trend of smart systems based on various constrained devices. Lightweight cryptographic algorithms are mainly solved the most security concern of constrained devices and IoE systems. On the other hand, most lightweight algorithms are suffering from the trade-off between complexity and performance. Moreover, the strength of the cryptosystems, including the speed of the algorithm and the complexity of the system against the cryptanalysis. A chaotic system is based on nonlinear dynamic equations that are sensitive to initial conditions and produce high randomness which is a good choice for cryptosystems. In this work, we proposed a new five-dimensional of a chaoti

... Show More
Scopus (9)
Crossref (7)
Scopus Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
PROTOTYPING TO DESIGN AN ANAGLYPH 3D IMAGE BASED ON WATERFALL MODEL
...Show More Authors

In this paper, a discussion of the principles of stereoscopy is presented, and the phases
of 3D image production of which is based on the Waterfall model. Also, the results are based
on one of the 3D technology which is Anaglyph and it's known to be of two colors (red and
cyan).
A 3D anaglyph image and visualization technologies will appear as a threedimensional
by using a classes (red/cyan) as considered part of other technologies used and
implemented for production of 3D videos (movies). And by using model to produce a
software to process anaglyph video, comes very important; for that, our proposed work is
implemented an anaglyph in Waterfall model to produced a 3D image which extracted from a
video.

View Publication Preview PDF
Publication Date
Sun Dec 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Solving the Inverse Kinematic Equations of Elastic Robot Arm Utilizing Neural Network
...Show More Authors

The inverse kinematic equation for a robot is very important to the control robot’s motion and position. The solving of this equation is complex for the rigid robot due to the dependency of this equation on the joint configuration and structure of robot link. In light robot arms, where the flexibility exists, the solving of this problem is more complicated than the rigid link robot because the deformation variables (elongation and bending) are present in the forward kinematic equation. The finding of an inverse kinematic equation needs to obtain the relation between the joint angles and both of the end-effector position and deformations variables. In this work, a neural network has been proposed to solve the problem of inverse kinemati

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Dec 01 2018
Journal Name
2018 Third Scientific Conference Of Electrical Engineering (scee)
An Intelligent Cognitive System Design for Mobile Robot based on Optimization Algorithm
...Show More Authors

View Publication
Scopus (8)
Scopus Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (32)
Crossref (13)
Scopus Clarivate Crossref