This research explores the use of solid polymer electrolytes (SPEs) as a conductive medium for sodium ions in sodium‐ion batteries, presenting a possible alternative to traditional lithium‐ion battery technology. The researchers prepare SPEs with varying molecular weight ratios of polyacrylonitrile (PAN) and sodium tetrafluoroborate (NaBF4) using a solution casting method with dimethyl formamide as the solvent. Through optical absorbance measurements, we identified the PAN:NaBF4 (80:20) SPE composition as having the lowest energy band gap value (4.48 eV). This composition also exhibits high thermal stability based on thermogravimetric analysis results. Electrochemical impedance spectroscopy reveals an ionic conductivity of 1.02 × 10−4 S cm−1 for the PAN:NaBF4 (80:20) blend at ambient temperature. Additionally, linear sweep voltammetry demonstrates its good electrochemical stability up to 3.22 V. We assemble a primary sodium‐ion battery using the optimal SPE composition (Na/(PAN + NaBF4)/(I2 + C + electrolyte)). This battery achieves an open‐circuit voltage of 2.83 V and displays promising discharge performance.
A comparative investigation of gas sensing properties of SnO2 doped with WO3 based on thin film and bulk forms was achieved. Thin films were deposited by thermal evaporation technique on glass substrates. Bulk sensors in the shape of pellets were prepared by pressing SnO2:WO3 powder. The polycrystalline nature of the obtained films with tetragonal structure was confirmed by X-ray diffraction. The calculated crystalline size was 52.43 nm. Thickness of the prepared films was found 134 nm. The optical characteristics of the thin films were studied by using UV-VIS Spectrophotometer in the wavelength range 200 nm to 1100 nm, the energy band gap, extinction coefficient and refractive index of the thin film were 2.5 eV , 0.024 and 2.51, respective
... Show MoreThe semiconductor ZnO is one of II – VI compound group, it is prepare as thin films by using chemical spray pyrolysis technique; the films are deposited onto glass substrate at 450 °C by using aqueous zinc chloride as a spray solution of molar concentration 0.1 M/L. Sample of the prepared film is irradiating by Gamma ray using CS 137, other sample is annealed at 550°C. The structure of the irradiated and annealed films are analyzed with X-ray diffraction, the results show that the films are polycrystalline in nature with preferred (002) orientation. The general morphology of ZnO films are imaged by using the Atomic Force Microscope (AFM), it constructed from nanostructure with dimensions in order of 77 nm.
The optical properties o
SUMMARY. – Absorption, flourescence, quantum yield and lifetime of rhodamine B in chloroform, methanol and dimethyl sulfoxide were measured. A comparison was done of these quantities with those for solid solutions, which are obtained by mixing constant volume proportions of dye at a concentration of 1×10–4M/l with different volume proportions from the concentrated solution of polymer in chloroform and dimethyl sulfoxide. The results showed that the addition of polymer to liquid concentrated solutions (1×10–4M/l) of rhodamine B dye from expecting, which leads to development of active medium for laser dye at high concentration, increase the spectra shift toward high energies, and the luminescence quantum yield but decreasing radiative
... Show MoreAbsorption, fluorescence, quantum yield and lifetime of rhodamine 6G in chloroform, methanol and dimethyl sulfoxide were measured. From a comparison of these quantities, with those for solid solutions (solid solutions are obtained by mixing constant volume proportions of dye at a concentration of 1*10-4M/l with different volume proportions from the concentrated solution of polymer in chloroform and dimethyl sulfoxide). The results showed that the addition of polymer to liquid concentrated solutions (1*10-4M/l )of rhodamine 6G dye from expecting [which leading to development active medium for laser dye at high concentration] increase the spectra shift toward high energies, and the luminescence quantum yield but decreasing radiative lifetim
... Show MoreEbastine (EBS) is a non-sedating antihistamine with a long duration of action. This drug has predominantly hydrophobic property causing a low solubility and low bioavailability. Surface solid dispersions (SSD) is an effective technique for improving the solubility and dissolution rate of poorly soluble drugs by using hydrophilic water insoluble carriers.
The present study aims to enhance the solubility and dissolution rate of EBS by using surface solid dispersion technique. Avicel® PH101, Avicel® PH 102, croscarmellose sodium(CCS) and sodium starch glycolate(SSG) were used as water insoluble hydrophilic carriers.
The SSD formulations of EBS were prepared by the solvent evaporation method in different drug: carrier
... Show MoreThis research study the effect of surface modification and copper (Cu) plating carbon fiber (CF) surface on the thermal stability and wettability of carbon fiber (CF)/epoxy (EP) composites. The TGA result indicates that the thermal-stability of carbon fiber may be enhanced after Cu coating CF. TGA curve showed that the treatment temperature was enhanced thermal stability of Ep/CF, this is due to the oxidation during heating. The Cu plating increased the thermal conductivity, this increase might be due to reduce in contact resistance at the interface due to chemical modification and copper plating and tunneling resistance.
The increase of surface polarity after coating cause decreas
... Show More