Position control of servo motor systems is a challenging task because of inevitable factors such as uncertainties, nonlinearities, parametric variations, and external perturbations. In this article, to alleviate the above issues, a practical adaptive fast terminal sliding mode control (PAFTSMC) is proposed for better tracking performance of the servo motor system by using a state observer and bidirectional adaptive law. First, a smooth-tangent-hyperbolic-function-based practical fast terminal sliding mode control (PFTSM) surface is designed to ensure not only fast finite time tracking error convergence but also chattering reduction. Second, the PAFTSMC is proposed for the servo motor, in which a two-way adaptive law is designed to further suppress the chattering and overestimation problems. More importantly, the proposed adaptive technique can update the switching gain according to the system uncertainties, which can provide high gain in the reaching phase and then decrease to the smallest value in the sliding phase to avoid the monotonically increasing gain that exists in most adaptation methods. Third, the finite-time stability of the closed-loop system is proved based on the Lyapunov theorem. Finally, the simulation studies and experimental tests verify the effectiveness of the proposed control in terms of better tracking, strong robustness, and reduced chattering, compared to existing algorithms.
An optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination
... Show MoreThe present study aims to get experimentally a deeper understanding of the efficiency of carbon fiber-reinforced polymer (CFRP) sheets applied to improve the torsional behavior of L-shaped reinforced concrete spandrel beams in which their ledges were loaded in two stages under monotonic loading. An experimental program was conducted on spandrel beams considering different key parameters including the cross-sectional aspect ratio (
This paper deals with the problem of the mechanics of the operation of cinematography in the development of museum exhibition halls. In the first chapter, the researcher dealt with the problem and presented it to reach the goals and purpose of the research, which was represented in using and developing the methods and mechanisms of the presentation to keep pace with what is happening in the world of technology and access to the presented model to new formula and vision declares aesthetical and cognitive measure, thus the search constitutes an importance in absorbing Scenography dimensions in the theater and moved to the idea of the museum and the development of the display models and using them in drawing and representation of perception
... Show MoreThe advancements in Information and Communication Technology (ICT), within the previous decades, has significantly changed people’s transmit or store their information over the Internet or networks. So, one of the main challenges is to keep these information safe against attacks. Many researchers and institutions realized the importance and benefits of cryptography in achieving the efficiency and effectiveness of various aspects of secure communication.This work adopts a novel technique for secure data cryptosystem based on chaos theory. The proposed algorithm generate 2-Dimensional key matrix having the same dimensions of the original image that includes random numbers obtained from the 1-Dimensional logistic chaotic map for given con
... Show MoreThis paper deals with a Twin Rotor Aerodynamic System (TRAS). It is a Multi-Input Multi-Output (MIMO) system with high crosscoupling between its two channels. It proposes a hybrid design procedure that combines frequency response and root locus approaches. The proposed controller is designated as PID-Lead Compensator (PIDLC); the PID controller was designed in previous work using frequency response design specifications, while the lead compensator is proposed in this paper and is designed using the root locus method. A general explicit formula for angle computations in any of the four quadrants is also given. The lead compensator is designed by shifting the dominant closed-loop poles slightly to the left in the s-plane. This has the effect
... Show MoreGlobally, over forty million people are living with Human Immunodeficiency Viral (HIV) infections. Highly Active Antiretroviral Therapy (HAART) consists of two or three Antiretroviral (ARV) drugs and has been used for more than a decade to prolong the life of AIDS-diagnosed patients. The persistent use of HAART is essential for effectively suppressing HIV replication. Frequent use of multiple medications at relatively high dosages is a major reason for patient noncompliance and an obstacle to achieving efficient pharmacological treatment. Despite strict compliance with the HAART regimen, the eradication of HIV from the host remains unattainable. Anatomical and Intracellular viral reservo
Abstract
Lightweight materials is used in the sheet metal hydroforming process, because it can be adapted to the manufacturing of complex structural components into a single body with high structural stiffness. Sheet hydroforming has been successfully developed in industry such as in the manufacturing of the components of automotive.The aim of this study is to simulate the experimental results ( such as the amount of pressure required to hydroforming process, stresses, and strains distribution) with results of finite element analyses (FEA) (ANSYS 11) for aluminum alloy (AA5652) sheets with thickness (1.2mm) before heat treatm
... Show MoreIn data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me