This paper presents an efficient system using a deep learning algorithm that recognizes daily activities and investigates the worst falling cases to save elders during daily life. This system is a physical activity recognition system based on the Internet of Medical Things (IoMT) and uses convolutional neural networks (CNNets) that learn features and classifiers automatically. The test data include the elderly who live alone. The performance of CNNets is compared against that of state-of-the-art methods, such as activity windowing, fixed sample windowing, time-weighted windowing, mutual information windowing, dynamic windowing, fixed time windowing, sequence prediction algorithm, and conditional random fields. Th
... Show More
Viscosity is one of the most important governing parameters of the fluid flow, either in the porous media or in pipelines. So it is important to use an accurate method to calculate the oil viscosity at various operating conditions. In the literature, several empirical correlations have been proposed for predicting crude oil viscosity. However, these correlations are limited to predict the oil viscosity at specified conditions. In the present work, an extensive experimental data of oil viscosities collected from different samples of Iraqi oil reservoirs was applied to develop a new correlation to calculate the oil viscosity at various operating conditions either for dead, satura
... Show MorePseudomonas aeruginosa and Klebsiella pneumoniae appears good growth when replicate to culture with heavy crude oil. K. pneumoniae was less ability to biodegrade the heavy crude oil (66.22 wt.%) compare with P. aeruginosa 74 wt.%). Also the emulsion percent were about 64.8 % and 62.5 % for K. pneumoniae and P. aeruginosa, respectively. The results showed that the emulsions produced from both the strains decrease the surface tension of the media from 68.43 Mn/m (for control sample) to 44.50 and 43.30 Mn/m for P. aeruginosa and K. pneumoniae, respectively. The optimum temperature and pH for the hydrocarbons biodegradation were 28 ºC and 7, respectively. The incubation period of 28 days of the isolated increased hydrocarbons biodegradation
... Show MoreIntelligent or smart completion wells vary from conventional wells. They have downhole flow control devices like Inflow Control Devices (ICD) and Interval Control Valves (ICV) to enhance reservoir management and control, optimizing hydrocarbon output and recovery. However, to explain their adoption and increase their economic return, a high level of justification is necessary. Smart horizontal wells also necessitate optimizing the number of valves, nozzles, and compartment length. A three-dimensional geological model of the As reservoir in AG oil field was used to see the influence of these factors on cumulative oil production and NPV. After creating the dynamic model for the As reservoir using the program Petrel (2017.4), we
... Show MorePetrophysical characterization is the most important stage in reservoir management. The main purpose of this study is to evaluate reservoir properties and lithological identification of Nahr Umar Formation in Nasiriya oil field. The available well logs are (sonic, density, neutron, gamma-ray, SP, and resistivity logs). The petrophysical parameters such as the volume of clay, porosity, permeability, water saturation, were computed and interpreted using IP4.4 software. The lithology prediction of Nahr Umar formation was carried out by sonic -density cross plot technique. Nahr Umar Formation was divided into five units based on well logs interpretation and petrophysical Analysis: Nu-1 to Nu-5. The formation lithology is mainly
... Show MoreExcessive torque and drag can be critical limitation during drilling highly deviated oil wells. Using the modeling is regarded as an invaluable process to assist in well planning and to predict and prevent drilling problems. Identify which problems lead to excessive torque and drag to prevent cost losses and equipment damage. Proper modeling data is highly important for knowing and prediction hole problems may occur due to torque and drag and select the best method to avoid these problems related to well bore and drill string. In this study, Torque and drag well plan program from landmark worldwide programming group (Halliburton Company) used to identify hole problems.one deviated well in Zubair oil fields named, ZB-250 selected for anal
... Show MoreThe petrophysical characteristics of five wells drilled into the Sa'di Formation in the Halfaya oil field were evaluated using IP software to determine a reservoir and explore hydrocarbon reserve zones. The lithology was evaluated using the M-N cross-plot method. The diagram showed that the Sa'di Formation was mainly composed of calcite (represented by the limestone region) is the main mineral in the Sa′di Reservoir. Using a density-neutron cross plot to identify the lithology showed that the formation mainly consists of limestone with minor shale. Gamma-ray logs were employed to calculate the shale quantity in each well. The porosity at weak hole intervals was calculated using a sonic log and neutron-density log at the reservoir
... Show MoreExcessive torque and drag can be critical limitation during drilling highly deviated oil wells. Using the modeling is regarded as an invaluable process to assist in well planning and to predict and prevent drilling problems. Identify which problems lead to excessive torque and drag to prevent cost losses and equipment damage. Proper modeling data is highly important for knowing and prediction hole problems may occur due to torque and drag and select the best method to avoid these problems related to well bore and drill string. In this study, Torque and drag well plan program from landmark worldwide programming group (Halliburton Company) used to identify hole problems.one deviated well in Zubair oil fields named, ZB-250 selected for
... Show MoreHydrocarbon displacement at the pore scale is mainly controlled by the wetness properties of the porous media. Consequently, several techniques including nanofluid flooding were implemented to manipulate the wetting behavior of the pore space in oil reservoirs. This study thus focuses on monitoring the displacement of oil from artificial glass porous media, as a representative for sandstone reservoirs, before and after nanofluid flooding. Experiments were conducted at various temperatures (25 – 50° C), nanoparticles concentrations (0.001 – 0.05 wt% SiO2 NPs), salinity (0.1 – 2 wt% NaCl), and flooding time. Images were taken via a high-resolution microscopic camera and analyzed to investigate the displacement of the oil
... Show More