he aim of this study is to get a plant extracts to use it as molluscicides to control the snail vector of Schistosomiasis andfinely control the disease. Laboratory study was performed to compare the molluscicidal activity of leaves and stems extractsof Cucumis melo against Bulinus truncatus snail. The snail B. truncatus was exposed to a serial concentrations of leaves andstems extracts (4000ppm, 5000ppm) in this work. Different effects of the extracts to the snail B. truncatus were recorded.These effects includes death, escaping and imbalance of snail behavior. 96hr-LD50 values of leaves extracts were calculatedfor the doses 4000 and 5000ppm as (76 and 37%) respectively while for stems were (105 and 47%) respectively. We found thatthe snail B. truncatus was more susceptible to leaves than stems extracts. The Molluscicidal activity of C. melo extractsdepended on increase of extract concentrations and time of exposure (p>0.05) (2) (PDF) Schistosomiasis vector control using cucumis melo plantextractswithbioassayexperiment. Available from: https://www.researchgate.net/publication/326097198_Schistosomiasis_vector_control_using_cucumis_melo_plantextractswithbioassayexperiment [accessed Apr 08 2023].
the research ptesents a proposed method to compare or determine the linear equivalence of the key-stream from linear or nonlinear key-stream
High-resolution imaging of celestial bodies, especially the sun, is essential for understanding dynamic phenomena and surface details. However, the Earth's atmospheric turbulence distorts the incoming light wavefront, which poses a challenge for accurate solar imaging. Solar granulation, the formation of granules and intergranular lanes on the sun's surface, is important for studying solar activity. This paper investigates the impact of atmospheric turbulence-induced wavefront distortions on solar granule imaging and evaluates, both visually and statistically, the effectiveness of Zonal Adaptive Optics (AO) systems in correcting these distortions. Utilizing cellular automata for granulation modelling and Zonal AO correction methods,
... Show MoreReverse osmosis membrane desalination is one of the most significant water treatments that is used to offer freshwater. The aim of this research is to study the effect of controlling the value of the zeta potential on the suspended particles in the water and the proximity of the membrane surfaces in the colloidal solution, to keep the water stable electrically and disperse the colloidal particles. To achieve this aim, the experimental study was conducted in the Sanitary Engineering Laboratory, in the engineering college - University of Baghdad. Two systems were set up, one worked normally and the other worked by using the zeta rod placed before the reverse osmosis membrane. The results showed that the effect of the zeta rod increas
... Show MoreIn this paper, an enhanced artificial potential field (EAPF) planner is introduced. This planner is proposed to rapidly find online solutions for the mobile robot path planning problems, when the underlying environment contains obstacles with unknown locations and sizes. The classical artificial potential field represents both the repulsive force due to the detected obstacle and the attractive force due to the target. These forces can be considered as the primary directional indicator for the mobile robot. However, the classical artificial potential field has many drawbacks. So, we suggest two secondary forces which are called the midpoint
... Show MoreThe synchronization of a complex network with optoelectronic feedback has been introduced theoretically, with use of 2×2 oscillators network; each oscillator considered is an optocoupler (LED coupled with photo-detector). Fixing the bias current (δ) and increasing the feedback strength (Ԑ) of each oscillator, the dynamical sequence like chaotic and periodic mixed mode oscillations has been observed. Synchronization of unidirectionally coupled of light emitting diodes network has been featured when coupling strength equal to 1.7×10-4. The transition between non-synchronization and synchronization states by means of the spatio-temporal distribution has been investigated.
A steganography hides information within other information, such as file, message, picture, or video. A cryptography is the science of converting the information from a readable form to an unreadable form for unauthorized person. The main problem in the stenographic system is embedding in cover-data without providing information that would facilitate its removal. In this research, a method for embedding data into images is suggested which employs least significant bit Steganography (LSB) and ciphering (RSA algorithm) to protect the data. System security will be enhanced by this collaboration between steganography and cryptography.