In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynamics of our proposed model.
The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.
In this work, the fractional damped Burger's equation (FDBE) formula = 0,
The laws of the three religions tend to extend the rules and foundations of coexistence, and this is achieved in achieving the values and principles that these laws have nourished in all societies.
Our research deals with a major problem that has broken out in our societies, namely (disturbing the balance of values and behavioral standard between people), and perhaps one of the greatest causes of the problem is to move away from the correct divine discourse and sound approach, as well as corruption of common sense and the violation of its rules and found principles in the hearts of people.
This paper investigates the effect of magnetohydrodynamic (MHD) of an incompressible generalized burgers’ fluid including a gradient constant pressure and an exponentially accelerate plate where no slip hypothesis between the burgers’ fluid and an exponential plate is no longer valid. The constitutive relationship can establish of the fluid model process by fractional calculus, by using Laplace and Finite Fourier sine transforms. We obtain a solution for shear stress and velocity distribution. Furthermore, 3D figures are drawn to exhibit the effect of magneto hydrodynamic and different parameters for the velocity distribution.
This study was conducted in a lath house, Dept of Hort. and Landscape, College of Agricultural Engineering Sciences, Univ. During the 2021 growing season, Baghdad will investigate the influence of organic and Biological fertilizers on three Citrus rootstocks' growth and leaf mineral content. The first factor is the addition of liquid organic fertilizers Vit-Org (O) at three levels without addition (O0), soil addition at 10 ml.L-1 (O10) and soil addition at 20 ml.L-1 (O20). The second factor is the addition of nitrogen-fixing bacteria without addition (N1), add 30 ml.Transplant-1 of Azotobacter chroococcum (N2) and add 30 ml.Transplant-1 of Azospirillum brasilemse (N3). The third factor is three citrus rootstocks: sour orange (R1), R
... Show MoreIn the current study, three types of algae namely Tetradesmus nygaardi (MZ801740), Scenedesmus quadricauda (MZ801741) and Coelastrella sp (MZ801742) were extracted by 95% ethanol and hexane against two types of gram positive and two types of gram negative bacteria by wells diffusion methods. Eleven concentrations from the extract of algae (2, 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50 mg/ml) were utilized. It was noticed that ethanolic extraction was more effective than hexane in Scenedesmus quadricauda than the two other mentioned algal species against all pathogenic bacteria, Acintobacter baumanii (ATCC: 19606), Klebsiella pneumonia (ATCC: 13883) Enterococcus faecalis (ATCC: 29212) and Staphylococc
... Show More