In this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynamics of our proposed model.
A new technique to study the telegraph equation, mostly familiar as damped wave equation is introduced in this study. This phenomenon is mostly rising in electromagnetic influences and production of electric signals. The proposed technique called as He-Fractional Laplace technique with help of Homotopy perturbation is utilized to found the exact and nearly approximated results of differential model and numerical example of telegraph equation or damped wave equation in this article. The most unique term of this technique is that, there is no worry to find the next iteration by integration in recurrence relation. As fractional Laplace integral transformation has some limitations in non-linear terms, to get the result of nonlinear term in
... Show MoreBackground: Atrophic postoperative and traumatic scarring are common cosmetic problems for patients. Combining CO2 laser ablation with a fractional photothermolysis system in a treatment known as ablative fractional resurfacing fulfilling the new demands for a lesser risk of side effects and minimal or no downtime.Objective: To assess the safety and efficacy of ablation fractional CO2 laser treatments for surgical scarring .methods: Twenty one patient ( 14 women, and 7 men ) with various skin types , I to IV , aged 3 to 48 years , presents with 24 scars between June and December 2012 , four patients excluded from study because they are not continued in follow up , the remaining 17 patient completed all 3 treatments & 6 months follow
... Show MoreBackground: Polyetheretherketone (PEEK) is a promising implant material due to its superior biomechanical strength. However, due to its hydrophobic nature and lack of cellular adhesion properties, it has poor integration with bone tissue. Methods: A fractional CO2 laser was used with various parameters for surface texturing of PEEK substrate to enhance its surface properties. An optical microscope and field-emission scanning electron microscope (FESEM) were used to examine the surface morphology of untextured and laser-textured samples. Energy dispersive X-ray spectroscopy (EDX) was performed to determine the effect of the laser on the microstructure of PEEK. Surface microroughness, atomic force microscopy (AFM), and wettability were invest
... Show MoreThe tourism industry has become, currently, an art, an industry and a science. It is also one of the components that make up touristic regions. Tourist attractions are no longer the exclusive visits of museums and archeological sites, but also involve other service facilities. It is, therefore, imperative that the authorities should become aware of the degradation of tourist resorts and prevent them from getting worse. Moreover, the authorities should take a set of decisions concerning the protection of the urban aspect with its historical, social, and environmental dimensions, as well as, adapting it to the modern requirements that can bring comfort to the citizens and tourists at physical and psychological levels.
Acquisition provisions in Islamic jurisprudence
This paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
In this paper the use of a circular array antenna with adaptive system in conjunction with modified Linearly Constrained Minimum Variance Beam forming (LCMVB) algorithm is proposed to meet the requirement of Angle of Arrival (AOA) estimation in 2-D as well as the Signal to Noise Ratio (SNR) of estimated sources (Three Dimensional 3-D estimation), rather than interference cancelation as it is used for. The proposed system was simulated, tested and compared with the modified Multiple Signal Classification (MUSIC) technique for 2-D estimation. The results show the system has exhibited astonishing results for simultaneously estimating 3-D parameters with accuracy approximately equivalent to the MUSIC technique (for estimating elevation and a
... Show MoreEchocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.
In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations nonhomogeneous of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.