A design for a photovoltaic-thermal (PVT) assembly with a water-cooled heat sink was planned, constructed, and experimentally evaluated in the climatic conditions of the southern region of Iraq during the summertime. The water-cooled heat sink was applied to thermally manage the PV cells, in order to boost the electrical output of the PVT system. A set of temperature sensors was installed to monitor the water intake, exit, and cell temperatures. The climatic parameters including the wind velocity, atmospheric pressure, and solar irradiation were also monitored on a daily basis. The effects of solar irradiation on the average PV temperature, electrical power, and overall electrical-thermal efficiency were investigated. The findings indicate that the PV temperature would increase from 65 to 73 °C, when the solar irradiation increases from 500 to 960 W/m2, with and without cooling, respectively. Meanwhile, the output power increased from 35 to 55 W when the solar irradiation increased from 500 to 960 W/m2 during the daytime. The impact of varying the mass flow rate of cooling water in the range of 4 to 16 L/min was also examined, and it was found that the cell temperature declines as the water flow increases in intensity throughout the daytime. The maximum cell temperature recorded for PV modules without cooling was in the middle of the day. The lowest cell temperature was also recorded in the middle of the day for a PVT solar system with 16 L/min of cooling water.
In this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended
use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical paramete
In this study water quality was indicated in terms of Water Quality Index that was determined through summarizing multiple parameters of water test results. This index offers a useful representation of the overall quality of water for public or any intended use as well as indicating pollution, which are useful in water quality management and decision making. The application of Water Quality Index (WQI) with ten physicochemical water quality parameters was performed to evaluate the quality of Euphrates River water for drinking usage. This was done by subjecting the water samples collected from seven stations within Al-Anbar province during the period 2004-2010 to comprehensive physicochemical analysis. The ten physicochemical parame
... Show MoreBackground: This study was designed to measure the displacement pattern of posterior palatal seal (pps) area in different forms of the palate and with different impression techniques. Materials and method: This study was used to measure the displacement pattern of (pps)in different palatal shapes by using different impression materials Korrecta wax No.4,Green compound and design of House for pps for each palatal forms by using a 3D Scanner of CAD/CAM and measuring the distance between 2 points in pps area by using Caural Threw. Result: The results show highly significant differences between these techniques and the control group (impression with light body) Conclusion: The physiological impression technique of pps with Korecta wax no.4
... Show MoreThe present experimental work is conducted to examine the influence of adding Alumina (Al2O3) nanoparticles and Titanium oxide (TiO2) nanoparticles each alone to diesel fuel on the characteristic of the emissions. The size of both Alumina and Titanium oxide nanoparticles which have been added to diesel fuel to obtain nano-fuel is about 20 nm and 25 nm respectively. Three doses of (Al2O3) and (TiO2) were prepared (25, 50, and 100) ppm. The nanoparticles mixed with gas oil fuel by mechanical homogenous (manual electrical mixer) and ultrasonic processor. The study reveals that the adding of Aluminum oxide (Al2O3) and Titanium oxide (TiO2) to g
... Show MoreThis research describes a new model inspired by Mobilenetv2 that was trained on a very diverse dataset. The goal is to enable fire detection in open areas to replace physical sensor-based fire detectors and reduce false alarms of fires, to achieve the lowest losses in open areas via deep learning. A diverse fire dataset was created that combines images and videos from several sources. In addition, another self-made data set was taken from the farms of the holy shrine of Al-Hussainiya in the city of Karbala. After that, the model was trained with the collected dataset. The test accuracy of the fire dataset that was trained with the new model reached 98.87%.
Recent growth in transport and wireless communication technologies has aided the evolution of Intelligent Transportation Systems (ITS). The ITS is based on different types of transportation modes like road, rail, ocean and aviation. Vehicular ad hoc network (VANET) is a technology that considers moving vehicles as nodes in a network to create a wireless communication network. VANET has emerged as a resourceful approach to enhance the road safety. Road safety has become a critical issue in recent years. Emergency incidents such as accidents, heavy traffic and road damages are the main causes of the inefficiency of the traffic flow. These occurrences do not only create the congestion on the road but also increase the fuel consumption and p
... Show MoreThe solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, i
... Show More